32,287 research outputs found

    Precise motion descriptors extraction from stereoscopic footage using DaVinci DM6446

    Get PDF
    A novel approach to extract target motion descriptors in multi-camera video surveillance systems is presented. Using two static surveillance cameras with partially overlapped field of view (FOV), control points (unique points from each camera) are identified in regions of interest (ROI) from both cameras footage. The control points within the ROI are matched for correspondence and a meshed Euclidean distance based signature is computed. A depth map is estimated using disparity of each control pair and the ROI is graded into number of regions with the help of relative depth information of the control points. The graded regions of different depths will help calculate accurately the pace of the moving target and also its 3D location. The advantage of estimating a depth map for background static control points over depth map of the target itself is its accuracy and robustness to outliers. The performance of the algorithm is evaluated in the paper using several test sequences. Implementation issues of the algorithm onto the TI DaVinci DM6446 platform are considered in the paper

    Crossing Generative Adversarial Networks for Cross-View Person Re-identification

    Full text link
    Person re-identification (\textit{re-id}) refers to matching pedestrians across disjoint yet non-overlapping camera views. The most effective way to match these pedestrians undertaking significant visual variations is to seek reliably invariant features that can describe the person of interest faithfully. Most of existing methods are presented in a supervised manner to produce discriminative features by relying on labeled paired images in correspondence. However, annotating pair-wise images is prohibitively expensive in labors, and thus not practical in large-scale networked cameras. Moreover, seeking comparable representations across camera views demands a flexible model to address the complex distributions of images. In this work, we study the co-occurrence statistic patterns between pairs of images, and propose to crossing Generative Adversarial Network (Cross-GAN) for learning a joint distribution for cross-image representations in a unsupervised manner. Given a pair of person images, the proposed model consists of the variational auto-encoder to encode the pair into respective latent variables, a proposed cross-view alignment to reduce the view disparity, and an adversarial layer to seek the joint distribution of latent representations. The learned latent representations are well-aligned to reflect the co-occurrence patterns of paired images. We empirically evaluate the proposed model against challenging datasets, and our results show the importance of joint invariant features in improving matching rates of person re-id with comparison to semi/unsupervised state-of-the-arts.Comment: 12 pages. arXiv admin note: text overlap with arXiv:1702.03431 by other author

    Object Matching in Distributed Video Surveillance Systems by LDA-Based Appearance Descriptors

    Full text link
    Establishing correspondences among object instances is still challenging in multi-camera surveillance systems, especially when the cameras’ fields of view are non-overlapping. Spatiotemporal constraints can help in solving the correspondence problem but still leave a wide margin of uncertainty. One way to reduce this uncertainty is to use appearance information about the moving objects in the site. In this paper we present the preliminary results of a new method that can capture salient appearance characteristics at each camera node in the network. A Latent Dirichlet Allocation (LDA) model is created and maintained at each node in the camera network. Each object is encoded in terms of the LDA bag-of-words model for appearance. The encoded appearance is then used to establish probable matching across cameras. Preliminary experiments are conducted on a dataset of 20 individuals and comparison against Madden’s I-MCHR is reported
    • …
    corecore