139 research outputs found

    Spherical Image Processing for Immersive Visualisation and View Generation

    Get PDF
    This research presents the study of processing panoramic spherical images for immersive visualisation of real environments and generation of in-between views based on two views acquired. For visualisation based on one spherical image, the surrounding environment is modelled by a unit sphere mapped with the spherical image and the user is then allowed to navigate within the modelled scene. For visualisation based on two spherical images, a view generation algorithm is developed for modelling an indoor manmade environment and new views can be generated at an arbitrary position with respect to the existing two. This allows the scene to be modelled using multiple spherical images and the user to move smoothly from one sphere mapped image to another one by going through in-between sphere mapped images generated

    Spherical image processing for immersive visualisation and view generation

    Get PDF
    This research presents the study of processing panoramic spherical images for immersive visualisation of real environments and generation of in-between views based on two views acquired. For visualisation based on one spherical image, the surrounding environment is modelled by a unit sphere mapped with the spherical image and the user is then allowed to navigate within the modelled scene. For visualisation based on two spherical images, a view generation algorithm is developed for modelling an indoor manmade environment and new views can be generated at an arbitrary position with respect to the existing two. This allows the scene to be modelled using multiple spherical images and the user to move smoothly from one sphere mapped image to another one by going through in-between sphere mapped images generated.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Applications in Monocular Computer Vision using Geometry and Learning : Map Merging, 3D Reconstruction and Detection of Geometric Primitives

    Get PDF
    As the dream of autonomous vehicles moving around in our world comes closer, the problem of robust localization and mapping is essential to solve. In this inherently structured and geometric problem we also want the agents to learn from experience in a data driven fashion. How the modern Neural Network models can be combined with Structure from Motion (SfM) is an interesting research question and this thesis studies some related problems in 3D reconstruction, feature detection, SfM and map merging.In Paper I we study how a Bayesian Neural Network (BNN) performs in Semantic Scene Completion, where the task is to predict a semantic 3D voxel grid for the Field of View of a single RGBD image. We propose an extended task and evaluate the benefits of the BNN when encountering new classes at inference time. It is shown that the BNN outperforms the deterministic baseline.Papers II-­III are about detection of points, lines and planes defining a Room Layout in an RGB image. Due to the repeated textures and homogeneous colours of indoor surfaces it is not ideal to only use point features for Structure from Motion. The idea is to complement the point features by detecting a Wireframe – a connected set of line segments – which marks the intersection of planes in the Room Layout. Paper II concerns a task for detecting a Semantic Room Wireframe and implements a Neural Network model utilizing a Graph Convolutional Network module. The experiments show that the method is more flexible than previous Room Layout Estimation methods and perform better than previous Wireframe Parsing methods. Paper III takes the task closer to Room Layout Estimation by detecting a connected set of semantic polygons in an RGB image. The end­-to-­end trainable model is a combination of a Wireframe Parsing model and a Heterogeneous Graph Neural Network. We show promising results by outperforming state of the art models for Room Layout Estimation using synthetic Wireframe detections. However, the joint Wireframe and Polygon detector requires further research to compete with the state of the art models.In Paper IV we propose minimal solvers for SfM with parallel cylinders. The problem may be reduced to estimating circles in 2D and the paper contributes with theory for the two­view relative motion and two­-circle relative structure problem. Fast solvers are derived and experiments show good performance in both simulation and on real data.Papers V-­VII cover the task of map merging. That is, given a set of individually optimized point clouds with camera poses from a SfM pipeline, how can the solutions be effectively merged without completely re­solving the Structure from Motion problem? Papers V­-VI introduce an effective method for merging and shows the effectiveness through experiments of real and simulated data. Paper VII considers the matching problem for point clouds and proposes minimal solvers that allows for deformation ofeach point cloud. Experiments show that the method robustly matches point clouds with drift in the SfM solution

    Cubic-panorama image dataset analysis for storage and transmission

    Full text link

    Image-Based Rendering Of Real Environments For Virtual Reality

    Get PDF

    Stereo-Based Region-Growing using String Matching

    Get PDF
    We present a novel stereo algorithm based on a coarse texture segmentation preprocessing phase. Matching is performed using a string comparison. Matching sub-strings correspond to matching sequences of textures. Inter-scanline clustering of matching sub-strings yields regions of matching texture. The shape of these regions yield information concerning object's height, width and azimuthal position relative to the camera pair. Hence, rather than the standard dense depth map, the output of this algorithm is a segmentation of objects in the scene. Such a format is useful for the integration of stereo with other sensor modalities on a mobile robotic platform. It is also useful for localization; the height and width of a detected object may be used for landmark recognition, while depth and relative azimuthal location determine pose. The algorithm does not rely on the monotonicity of order of image primitives. Occlusions, exposures, and foreshortening effects are not problematic. The algorithm can deal with certain types of transparencies. It is computationally efficient, and very amenable to parallel implementation. Further, the epipolar constraints may be relaxed to some small but significant degree. A version of the algorithm has been implemented and tested on various types of images. It performs best on random dot stereograms, on images with easily filtered backgrounds (as in synthetic images), and on real scenes with uncontrived backgrounds

    An investigation into common challenges of 3D scene understanding in visual surveillance

    Get PDF
    Nowadays, video surveillance systems are ubiquitous. Most installations simply consist of CCTV cameras connected to a central control room and rely on human operators to interpret what they see on the screen in order to, for example, detect a crime (either during or after an event). Some modern computer vision systems aim to automate the process, at least to some degree, and various algorithms have been somewhat successful in certain limited areas. However, such systems remain inefficient in general circumstances and present real challenges yet to be solved. These challenges include the ability to recognise and ultimately predict and prevent abnormal behaviour or even reliably recognise objects, for example in order to detect left luggage or suspicious objects. This thesis first aims to study the state-of-the-art and identify the major challenges and possible requirements of future automated and semi-automated CCTV technology in the field. This thesis presents the application of a suite of 2D and highly novel 3D methodologies that go some way to overcome current limitations.The methods presented here are based on the analysis of object features directly extracted from the geometry of the scene and start with a consideration of mainly existing techniques, such as the use of lines, vanishing points (VPs) and planes, applied to real scenes. Then, an investigation is presented into the use of richer 2.5D/3D surface normal data. In all cases the aim is to combine both 2D and 3D data to obtain a better understanding of the scene, aimed ultimately at capturing what is happening within the scene in order to be able to move towards automated scene analysis. Although this thesis focuses on the widespread application of video surveillance, an example case of the railway station environment is used to represent typical real-world challenges, where the principles can be readily extended elsewhere, such as to airports, motorways, the households, shopping malls etc. The context of this research work, together with an overall presentation of existing methods used in video surveillance and their challenges are described in chapter 1.Common computer vision techniques such as VP detection, camera calibration, 3D reconstruction, segmentation etc., can be applied in an effort to extract meaning to video surveillance applications. According to the literature, these methods have been well researched and their use will be assessed in the context of current surveillance requirements in chapter 2. While existing techniques can perform well in some contexts, such as an architectural environment composed of simple geometrical elements, their robustness and performance in feature extraction and object recognition tasks is not sufficient to solve the key challenges encountered in general video surveillance context. This is largely due to issues such as variable lighting, weather conditions, and shadows and in general complexity of the real-world environment. Chapter 3 presents the research and contribution on those topics – methods to extract optimal features for a specific CCTV application – as well as their strengths and weaknesses to highlight that the proposed algorithm obtains better results than most due to its specific design.The comparison of current surveillance systems and methods from the literature has shown that 2D data are however almost constantly used for many applications. Indeed, industrial systems as well as the research community have been improving intensively 2D feature extraction methods since image analysis and Scene understanding has been of interest. The constant progress on 2D feature extraction methods throughout the years makes it almost effortless nowadays due to a large variety of techniques. Moreover, even if 2D data do not allow solving all challenges in video surveillance or other applications, they are still used as starting stages towards scene understanding and image analysis. Chapter 4 will then explore 2D feature extraction via vanishing point detection and segmentation methods. A combination of most common techniques and a novel approach will be then proposed to extract vanishing points from video surveillance environments. Moreover, segmentation techniques will be explored in the aim to determine how they can be used to complement vanishing point detection and lead towards 3D data extraction and analysis. In spite of the contribution above, 2D data is insufficient for all but the simplest applications aimed at obtaining an understanding of a scene, where the aim is for a robust detection of, say, left luggage or abnormal behaviour; without significant a priori information about the scene geometry. Therefore, more information is required in order to be able to design a more automated and intelligent algorithm to obtain richer information from the scene geometry and so a better understanding of what is happening within. This can be overcome by the use of 3D data (in addition to 2D data) allowing opportunity for object “classification” and from this to infer a map of functionality, describing feasible and unfeasible object functionality in a given environment. Chapter 5 presents how 3D data can be beneficial for this task and the various solutions investigated to recover 3D data, as well as some preliminary work towards plane extraction.It is apparent that VPs and planes give useful information about a scene’s perspective and can assist in 3D data recovery within a scene. However, neither VPs nor plane detection techniques alone allow the recovery of more complex generic object shapes - for example composed of spheres, cylinders etc - and any simple model will suffer in the presence of non-Manhattan features, e.g. introduced by the presence of an escalator. For this reason, a novel photometric stereo-based surface normal retrieval methodology is introduced to capture the 3D geometry of the whole scene or part of it. Chapter 6 describes how photometric stereo allows recovery of 3D information in order to obtain a better understanding of a scene, as well as also partially overcoming some current surveillance challenges, such as difficulty in resolving fine detail, particularly at large standoff distances, and in isolating and recognising more complex objects in real scenes. Here items of interest may be obscured by complex environmental factors that are subject to rapid change, making, for example, the detection of suspicious objects and behaviour highly problematic. Here innovative use is made of an untapped latent capability offered within modern surveillance environments to introduce a form of environmental structuring to good advantage in order to achieve a richer form of data acquisition. This chapter also goes on to explore the novel application of photometric stereo in such diverse applications, how our algorithm can be incorporated into an existing surveillance system and considers a typical real commercial application.One of the most important aspects of this research work is its application. Indeed, while most of the research literature has been based on relatively simple structured environments, the approach here has been designed to be applied to real surveillance environments, such as railway stations, airports, waiting rooms, etc, and where surveillance cameras may be fixed or in the future form part of a mobile robotic free roaming surveillance device, that must continually reinterpret its changing environment. So, as mentioned previously, while the main focus has been to apply this algorithm to railway station environments, the work has been approached in a way that allows adaptation to many other applications, such as autonomous robotics, and in motorway, shopping centre, street and home environments. All of these applications require a better understanding of the scene for security or safety purposes. Finally, chapter 7 presents a global conclusion and what will be achieved in the future

    Pedestrian detection and tracking using stereo vision techniques

    Get PDF
    Automated pedestrian detection, counting and tracking has received significant attention from the computer vision community of late. Many of the person detection techniques described so far in the literature work well in controlled environments, such as laboratory settings with a small number of people. This allows various assumptions to be made that simplify this complex problem. The performance of these techniques, however, tends to deteriorate when presented with unconstrained environments where pedestrian appearances, numbers, orientations, movements, occlusions and lighting conditions violate these convenient assumptions. Recently, 3D stereo information has been proposed as a technique to overcome some of these issues and to guide pedestrian detection. This thesis presents such an approach, whereby after obtaining robust 3D information via a novel disparity estimation technique, pedestrian detection is performed via a 3D point clustering process within a region-growing framework. This clustering process avoids using hard thresholds by using bio-metrically inspired constraints and a number of plan view statistics. This pedestrian detection technique requires no external training and is able to robustly handle challenging real-world unconstrained environments from various camera positions and orientations. In addition, this thesis presents a continuous detect-and-track approach, with additional kinematic constraints and explicit occlusion analysis, to obtain robust temporal tracking of pedestrians over time. These approaches are experimentally validated using challenging datasets consisting of both synthetic data and real-world sequences gathered from a number of environments. In each case, the techniques are evaluated using both 2D and 3D groundtruth methodologies

    Método para el registro automático de imágenes basado en transformaciones proyectivas planas dependientes de las distancias y orientado a imágenes sin características comunes

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Arquitectura de Computadores y Automática, leída el 18-12-2015Multisensory data fusion oriented to image-based application improves the accuracy, quality and availability of the data, and consequently, the performance of robotic systems, by means of combining the information of a scene acquired from multiple and different sources into a unified representation of the 3D world scene, which is more enlightening and enriching for the subsequent image processing, improving either the reliability by using the redundant information, or the capability by taking advantage of complementary information. Image registration is one of the most relevant steps in image fusion techniques. This procedure aims the geometrical alignment of two or more images. Normally, this process relies on feature-matching techniques, which is a drawback for combining sensors that are not able to deliver common features. For instance, in the combination of ToF and RGB cameras, the robust feature-matching is not reliable. Typically, the fusion of these two sensors has been addressed from the computation of the cameras calibration parameters for coordinate transformation between them. As a result, a low resolution colour depth map is provided. For improving the resolution of these maps and reducing the loss of colour information, extrapolation techniques are adopted. A crucial issue for computing high quality and accurate dense maps is the presence of noise in the depth measurement from the ToF camera, which is normally reduced by means of sensor calibration and filtering techniques. However, the filtering methods, implemented for the data extrapolation and denoising, usually over-smooth the data, reducing consequently the accuracy of the registration procedure...La fusión multisensorial orientada a aplicaciones de procesamiento de imágenes, conocida como fusión de imágenes, es una técnica que permite mejorar la exactitud, la calidad y la disponibilidad de datos de un entorno tridimensional, que a su vez permite mejorar el rendimiento y la operatividad de sistemas robóticos. Dicha fusión, se consigue mediante la combinación de la información adquirida por múltiples y diversas fuentes de captura de datos, la cual se agrupa del tal forma que se obtiene una mejor representación del entorno 3D, que es mucho más ilustrativa y enriquecedora para la implementación de métodos de procesamiento de imágenes. Con ello se consigue una mejora en la fiabilidad y capacidad del sistema, empleando la información redundante que ha sido adquirida por múltiples sensores. El registro de imágenes es uno de los procedimientos más importantes que componen la fusión de imágenes. El objetivo principal del registro de imágenes es la consecución de la alineación geométrica entre dos o más imágenes. Normalmente, este proceso depende de técnicas de búsqueda de patrones comunes entre imágenes, lo cual puede ser un inconveniente cuando se combinan sensores que no proporcionan datos con características similares. Un ejemplo de ello, es la fusión de cámaras de color de alta resolución (RGB) con cámaras de Tiempo de Vuelo de baja resolución (Time-of-Flight (ToF)), con las cuales no es posible conseguir una detección robusta de patrones comunes entre las imágenes capturadas por ambos sensores. Por lo general, la fusión entre estas cámaras se realiza mediante el cálculo de los parámetros de calibración de las mismas, que permiten realizar la trasformación homogénea entre ellas. Y como resultado de este xii Abstract procedimiento, se obtienen mapas de profundad y de color de baja resolución. Con el objetivo de mejorar la resolución de estos mapas y de evitar la pérdida de información de color, se utilizan diversas técnicas de extrapolación de datos. Un factor crucial a tomar en cuenta para la obtención de mapas de alta calidad y alta exactitud, es la presencia de ruido en las medidas de profundidad obtenidas por las cámaras ToF. Este problema, normalmente se reduce mediante la calibración de estos sensores y con técnicas de filtrado de datos. Sin embargo, las técnicas de filtrado utilizadas, tanto para la interpolación de datos, como para la reducción del ruido, suelen producir el sobre-alisamiento de los datos originales, lo cual reduce la exactitud del registro de imágenes...Sección Deptal. de Arquitectura de Computadores y Automática (Físicas)Fac. de Ciencias FísicasTRUEunpu
    corecore