395,404 research outputs found

    Coauthor prediction for junior researchers

    Get PDF
    Research collaboration can bring in different perspectives and generate more productive results. However, finding an appropriate collaborator can be difficult due to the lacking of sufficient information. Link prediction is a related technique for collaborator discovery; but its focus has been mostly on the core authors who have relatively more publications. We argue that junior researchers actually need more help in finding collaborators. Thus, in this paper, we focus on coauthor prediction for junior researchers. Most of the previous works on coauthor prediction considered global network feature and local network feature separately, or tried to combine local network feature and content feature. But we found a significant improvement by simply combing local network feature and global network feature. We further developed a regularization based approach to incorporate multiple features simultaneously. Experimental results demonstrated that this approach outperformed the simple linear combination of multiple features. We further showed that content features, which were proved to be useful in link prediction, can be easily integrated into our regularization approach. © 2013 Springer-Verlag

    Exploratory factor analysis of graphical features for link prediction in social networks

    Get PDF
    Social Networks attract much attention due to their ability to replicate social interactions at scale. Link prediction, or the assessment of which unconnected nodes are likely to connect in the future, is an interesting but non-trivial research area. Three approaches exist to deal with the link prediction problem: feature-based models, Bayesian probabilistic models, probabilistic relational models. In feature-based methods, graphical features are extracted and used for classification. Usually, these features are subdivided into three feature groups based on their formula. Some formulas are extracted based on neighborhood graph traverse. Accordingly, there exists three groups of features, neighborhood features, path-based features, node-based features. In this paper, we attempt to validate the underlying structure of topological features used in feature-based link prediction. The results of our analysis indicate differing results from the prevailing grouping of these features, which indicates that current literatures\u27 classification of feature groups should be redefined. Thus, the contribution of this work is exploring the factor loading of graphical features in link prediction in social networks. To the best of our knowledge, there is no prior studies had addressed it

    Embedding-based Method for the Supervised Link Prediction in Social Networks

    Get PDF
    In recent years, social network analysis has received a lot of interest. Link prediction is an important area of research in this field that uses information from current networks to predict the likely links that will emerge in the future. It has attracted considerable attention from interdisciplinary research communities due to its ubiquitous applications in biological networks, computer science, transportation networks, bioinformatics, telecommunication networks, and so on. Currently, supervised machine learning is one of the critical techniques in the link prediction task. Several algorithms have been developed by many authors to predict the future link in the network, but there is still scope to improve the previous approaches. In the supervised link prediction process, feature selection is a crucial step. Most existing algorithms use one type of similarity-based feature to represent data, which is not well described due to the large scale and heterogeneity of social networks. One of the newest techniques for link prediction is embedding methods, which are used to preparing the feature vector for each the nonexisting links in the network. In this paper, we introduce a novel approach to supervised link prediction based on feature embedding methods in order to achieve better performance. Our contribution considers a set of embedding methods as the feature vector for training the machine learning classifiers. The main focus of this work is to investigate the relevance of different feature embedding methods to improve the performance of the supervised link prediction models. The experimental results on some real-world temporal networks revealed satisfactory results, which encourage us for further analysis. Moreover, the use of feature embedding methods will provide better performance in this regard

    MODEL : motif-based deep feature learning for link prediction

    Get PDF
    Link prediction plays an important role in network analysis and applications. Recently, approaches for link prediction have evolved from traditional similarity-based algorithms into embedding-based algorithms. However, most existing approaches fail to exploit the fact that real-world networks are different from random networks. In particular, real-world networks are known to contain motifs, natural network building blocks reflecting the underlying network-generating processes. In this article, we propose a novel embedding algorithm that incorporates network motifs to capture higher order structures in the network. To evaluate its effectiveness for link prediction, experiments were conducted on three types of networks: social networks, biological networks, and academic networks. The results demonstrate that our algorithm outperforms both the traditional similarity-based algorithms (by 20%) and the state-of-the-art embedding-based algorithms (by 19%). © 2014 IEEE

    Link Prediction based on Deep Latent Feature Model by Fusion of Network Hierarchy Information

    Get PDF
    Link prediction aims at predicting latent edges according to the existing network structure information and it has become one of the hot topics in complex networks. Latent feature model that has been used in link prediction directly projects the original network into the latent space. However, traditional latent feature model cannot fully characterize the deep structure information of complex networks. As a result, the prediction ability of the traditional method in sparse networks is limited. Aiming at the above problems, we propose a novel link prediction model based on deep latent feature model by Deep Non-negative Matrix Factorization (DNMF). DNMF method can obtain more comprehensive network structure information through multi-layer factorization. Experiments on ten typical real networks show that the proposed method has performances superior to the state-of-the-art link prediction methods
    • …
    corecore