256 research outputs found

    Robust speaker recognition in the presence of speech coding distortion

    Get PDF
    For wireless remote access security, forensics, border control and surveillance applications, there is an emerging need for biometric speaker recognition systems to be robust to speech coding distortion. This thesis examines the robustness issue for three coders, namely, the ITU-T 6.3 kilobits per second (kbps) G.723.1, the ITU-T 8 kbps G.729 and the 12.2 kbps 3GPP GSM-AMR coder. Both speaker identification (SI) and speaker verification (SV) systems are considered and use a Gaussian mixture model (GMM) classifier. The systems are trained on clean speech and tested on the decoded speech. To mitigate the performance loss due to mismatched training and testing conditions, four robust features, two enhancement approaches and feature (SI) and score (SV) based fusion strategies are implemented. The first proposed novel enhancement method is feature compensation based on the affine transform and is used to map the features from the test scenario to the train scenario. The second is the McCree signal enhancement approach based on the spectral envelope information. A detailed two-way analysis of variance (ANOVA) supplemented with a multiple comparison test is performed in order to show statistical significance in application of these enhancement methods

    Improving the robustness of CELP-like speech decoders using late-arrival packets information : application to G.729 standard in VoIP

    Get PDF
    L'utilisation de la voix sur Internet est une nouvelle tendance dans Ie secteur des télécommunications et de la réseautique. La paquetisation des données et de la voix est réalisée en utilisant Ie protocole Internet (IP). Plusieurs codecs existent pour convertir la voix codée en paquets. La voix codée est paquetisée et transmise sur Internet. À la réception, certains paquets sont soit perdus, endommages ou arrivent en retard. Ceci est cause par des contraintes telles que Ie délai («jitter»), la congestion et les erreurs de réseau. Ces contraintes dégradent la qualité de la voix. Puisque la transmission de la voix est en temps réel, Ie récepteur ne peut pas demander la retransmission de paquets perdus ou endommages car ceci va causer plus de délai. Au lieu de cela, des méthodes de récupération des paquets perdus (« concealment ») s'appliquent soit à l'émetteur soit au récepteur pour remplacer les paquets perdus ou endommages. Ce projet vise à implémenter une méthode innovatrice pour améliorer Ie temps de convergence suite a la perte de paquets au récepteur d'une application de Voix sur IP. La méthode a déjà été intégrée dans un codeur large-bande (AMR-WB) et a significativement amélioré la qualité de la voix en présence de <<jitter » dans Ie temps d'arrivée des trames au décodeur. Dans ce projet, la même méthode sera intégrée dans un codeur a bande étroite (ITU-T G.729) qui est largement utilise dans les applications de voix sur IP. Le codeur ITU-T G.729 défini des standards pour coder et décoder la voix a 8 kb/s en utilisant 1'algorithme CS-CELP (Conjugate Stmcture Algebraic Code-Excited Linear Prediction).Abstract: Voice over Internet applications is the new trend in telecommunications and networking industry today. Packetizing data/voice is done using the Internet protocol (IP). Various codecs exist to convert the raw voice data into packets. The coded and packetized speech is transmitted over the Internet. At the receiving end some packets are either lost, damaged or arrive late. This is due to constraints such as network delay (fitter), network congestion and network errors. These constraints degrade the quality of speech. Since voice transmission is in real-time, the receiver can not request the retransmission of lost or damaged packets as this will cause more delay. Instead, concealment methods are applied either at the transmitter side (coder-based) or at the receiver side (decoder-based) to replace these lost or late-arrival packets. This work attempts to implement a novel method for improving the recovery time of concealed speech The method has already been integrated in a wideband speech coder (AMR-WB) and significantly improved the quality of speech in the presence of jitter in the arrival time of speech frames at the decoder. In this work, the same method will be integrated in a narrowband speech coder (ITU-T G.729) that is widely used in VoIP applications. The ITUT G.729 coder defines the standards for coding and decoding speech at 8 kb/s using Conjugate Structure Algebraic Code-Excited Linear Prediction (CS-CELP) Algorithm

    Discriminative and adaptive training for robust speech recognition and understanding

    Get PDF
    Robust automatic speech recognition (ASR) and understanding (ASU) under various conditions remains to be a challenging problem even with the advances of deep learning. To achieve robust ASU, two discriminative training objectives are proposed for keyword spotting and topic classification: (1) To accurately recognize the semantically important keywords, the non-uniform error cost minimum classification error training of deep neural network (DNN) and bi-directional long short-term memory (BLSTM) acoustic models is proposed to minimize the recognition errors of only the keywords. (2) To compensate for the mismatched objectives of speech recognition and understanding, minimum semantic error cost training of the BLSTM acoustic model is proposed to generate semantically accurate lattices for topic classification. Further, to expand the application of the ASU system to various conditions, four adaptive training approaches are proposed to improve the robustness of the ASR under different conditions: (1) To suppress the effect of inter-speaker variability on speaker-independent DNN acoustic model, speaker-invariant training is proposed to learn a deep representation in the DNN that is both senone-discriminative and speaker-invariant through adversarial multi-task training (2) To achieve condition-robust unsupervised adaptation with parallel data, adversarial teacher-student learning is proposed to suppress multiple factors of condition variability in the procedure of knowledge transfer from a well-trained source domain LSTM acoustic model to the target domain. (3) To further improve the adversarial learning for unsupervised adaptation with unparallel data, domain separation networks are used to enhance the domain-invariance of the senone-discriminative deep representation by explicitly modeling the private component that is unique to each domain. (4) To achieve robust far-field ASR, an LSTM adaptive beamforming network is proposed to estimate the real-time beamforming filter coefficients to cope with non-stationary environmental noise and dynamic nature of source and microphones positions.Ph.D

    Speech Detection Using Gammatone Features And One-class Support Vector Machine

    Get PDF
    A network gateway is a mechanism which provides protocol translation and/or validation of network traffic using the metadata contained in network packets. For media applications such as Voice-over-IP, the portion of the packets containing speech data cannot be verified and can provide a means of maliciously transporting code or sensitive data undetected. One solution to this problem is through Voice Activity Detection (VAD). Many VAD’s rely on time-domain features and simple thresholds for efficient speech detection however this doesn’t say much about the signal being passed. More sophisticated methods employ machine learning algorithms, but train on specific noises intended for a target environment. Validating speech under a variety of unknown conditions must be possible; as well as differentiating between speech and nonspeech data embedded within the packets. A real-time speech detection method is proposed that relies only on a clean speech model for detection. Through the use of Gammatone filter bank processing, the Cepstrum and several frequency domain features are used to train a One-Class Support Vector Machine which provides a clean-speech model irrespective of environmental noise. A Wiener filter is used to provide improved operation for harsh noise environments. Greater than 90% detection accuracy is achieved for clean speech with approximately 70% accuracy for SNR as low as 5d

    Using Gaussian Mixture Model and Partial Least Squares regression classifiers for robust speaker verification with various enhancement methods

    Get PDF
    In the presence of environmental noise, speaker verification systems inevitably see a decrease in performance. This thesis proposes the use of two parallel classifiers with several enhancement methods in order to improve the performance of the speaker verification system when noisy speech signals are used for authentication. Both classifiers are shown to receive statistically significant performance gains when signal-to-noise ratio estimation, affine transforms, and score-level fusion of features are all applied. These enhancement methods are validated in a large range of test conditions, from perfectly clean speech all the way down to speech where the noise is equally as loud as the speaker. After each classifier has been tuned to their best configuration, they are also fused together in different ways. In the end, the performances of the two classifiers are compared to each other and to the performances of their fusions. The fusion method where the scores of the classifiers are added together is found to be the best method
    corecore