1,793 research outputs found

    Friction, Vibration and Dynamic Properties of Transmission System under Wear Progression

    Get PDF
    This reprint focuses on wear and fatigue analysis, the dynamic properties of coating surfaces in transmission systems, and non-destructive condition monitoring for the health management of transmission systems. Transmission systems play a vital role in various types of industrial structure, including wind turbines, vehicles, mining and material-handling equipment, offshore vessels, and aircrafts. Surface wear is an inevitable phenomenon during the service life of transmission systems (such as on gearboxes, bearings, and shafts), and wear propagation can reduce the durability of the contact coating surface. As a result, the performance of the transmission system can degrade significantly, which can cause sudden shutdown of the whole system and lead to unexpected economic loss and accidents. Therefore, to ensure adequate health management of the transmission system, it is necessary to investigate the friction, vibration, and dynamic properties of its contact coating surface and monitor its operating conditions

    Fault diagnosis of main engine journal bearing based on vibration analysis using Fisher linear discriminant, K-nearest neighbor and support vector machine

    Get PDF
    Vibration technique in a machine condition monitoring provides useful reliable information, bringing significant cost benefits to industry. By comparing the signals of a machine running in normal and faulty conditions, detection of defected journal bearings is possible. This paper presents fault diagnosis of a journal bearing based on vibration analysis using three classifiers: Fisher Linear Discriminant (FLD), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM). The frequency-domain vibration signals of an internal combustion engine with intact and defective main journal bearings were obtained. 30 features were extracted by using statistical and vibration parameters. These features were used as inputs to the classifiers. Two different solution methods - variable K value and RBF kernel width (σ) were applied for FLD, KNN and SVM, respectively, in order to achieve the best accuracy. Finally, performance of the three classifiers was calculated in journal bearing fault diagnosis. The results demonstrated that the performance of SVM was significantly better in comparison to FLD and KNN. Also the results confirmed the potential of this procedure in fault diagnosis of journal bearings

    Prognostic Reasoner based adaptive power management system for a more electric aircraft

    Get PDF
    This research work presents a novel approach that addresses the concept of an adaptive power management system design and development framed in the Prognostics and Health Monitoring(PHM) perspective of an Electrical power Generation and distribution system(EPGS).PHM algorithms were developed to detect the health status of EPGS components which can accurately predict the failures and also able to calculate the Remaining Useful Life(RUL), and in many cases reconfigure for the identified system and subsystem faults. By introducing these approach on Electrical power Management system controller, we are gaining a few minutes lead time to failures with an accurate prediction horizon on critical systems and subsystems components that may introduce catastrophic secondary damages including loss of aircraft. The warning time on critical components and related system reconfiguration must permits safe return to landing as the minimum criteria and would enhance safety. A distributed architecture has been developed for the dynamic power management for electrical distribution system by which all the electrically supplied loads can be effectively controlled.A hybrid mathematical model based on the Direct-Quadrature (d-q) axis transformation of the generator have been formulated for studying various structural and parametric faults. The different failure modes were generated by injecting faults into the electrical power system using a fault injection mechanism. The data captured during these studies have been recorded to form a “Failure Database” for electrical system. A hardware in loop experimental study were carried out to validate the power management algorithm with FPGA-DSP controller. In order to meet the reliability requirements a Tri-redundant electrical power management system based on DSP and FPGA has been develope

    Comparison of two classifiers; K-nearest neighbor and artificial neural network, for fault diagnosis on a main engine journal-bearing,”

    Get PDF
    Abstract. Vibration analysis is an accepted method in condition monitoring of machines, since it can provide useful and reliable information about machine working condition. This paper surveys a new scheme for fault diagnosis of main journal-bearings of internal combustion (IC) engine based on power spectral density (PSD) technique and two classifiers, namely, K-nearest neighbor (KNN) and artificial neural network (ANN). Vibration signals for three different conditions of journal-bearing; normal, with oil starvation condition and extreme wear fault were acquired from an IC engine. PSD was applied to process the vibration signals. Thirty features were extracted from the PSD values of signals as a feature source for fault diagnosis. KNN and ANN were trained by training data set and then used as diagnostic classifiers. Variable K value and hidden neuron count (N) were used in the range of 1 to 20, with a step size of 1 for KNN and ANN to gain the best classification results. The roles of PSD, KNN and ANN techniques were studied. From the results, it is shown that the performance of ANN is better than KNN. The experimental results dèmonstrate that the proposed diagnostic method can reliably separate different fault conditions in main journal-bearings of IC engine

    A multitask-aided transfer learning-based diagnostic framework for bearings under inconsistent working conditions.

    Get PDF
    Rolling element bearings are a vital part of rotating machines and their sudden failure can result in huge economic losses as well as physical causalities. Popular bearing fault diagnosis techniques include statistical feature analysis of time, frequency, or time-frequency domain data. These engineered features are susceptible to variations under inconsistent machine operation due to the non-stationary, non-linear, and complex nature of the recorded vibration signals. To address these issues, numerous deep learning-based frameworks have been proposed in the literature. However, the logical reasoning behind crack severities and the longer training times needed to identify multiple health characteristics at the same time still pose challenges. Therefore, in this work, a diagnosis framework is proposed that uses higher-order spectral analysis and multitask learning (MTL), while also incorporating transfer learning (TL). The idea is to first preprocess the vibration signals recorded from a bearing to look for distinct patterns for a given fault type under inconsistent working conditions, e.g., variable motor speeds and loads, multiple crack severities, compound faults, and ample noise. Later, these bispectra are provided as an input to the proposed MTL-based convolutional neural network (CNN) to identify the speed and the health conditions, simultaneously. Finally, the TL-based approach is adopted to identify bearing faults in the presence of multiple crack severities. The proposed diagnostic framework is evaluated on several datasets and the experimental results are compared with several state-of-the-art diagnostic techniques to validate the superiority of the proposed model under inconsistent working conditions

    Predictive maintenance: a novel framework for a data-driven, semi-supervised, and partially online prognostic health management application in industries

    Get PDF
    Prognostic Health Management (PHM) is a predictive maintenance strategy, which is based on Condition Monitoring (CM) data and aims to predict the future states of machinery. The existing literature reports the PHM at two levels: methodological and applicative. From the methodological point of view, there are many publications and standards of a PHM system design. From the applicative point of view, many papers address the improvement of techniques adopted for realizing PHM tasks without covering the whole process. In these cases, most applications rely on a large amount of historical data to train models for diagnostic and prognostic purposes. Industries, very often, are not able to obtain these data. Thus, the most adopted approaches, based on batch and off-line analysis, cannot be adopted. In this paper, we present a novel framework and architecture that support the initial application of PHM from the machinery producers’ perspective. The proposed framework is based on an edge-cloud infrastructure that allows performing streaming analysis at the edge to reduce the quantity of the data to store in permanent memory, to know the health status of the machinery at any point in time, and to discover novel and anomalous behaviors. The collection of the data from multiple machines into a cloud server allows training more accurate diagnostic and prognostic models using a higher amount of data, whose results will serve to predict the health status in real-time at the edge. The so-built PHM system would allow industries to monitor and supervise a machinery network placed in different locations and can thus bring several benefits to both machinery producers and users. After a brief literature review of signal processing, feature extraction, diagnostics, and prognostics, including incremental and semi-supervised approaches for anomaly and novelty detection applied to data streams, a case study is presented. It was conducted on data collected from a test rig and shows the potential of the proposed framework in terms of the ability to detect changes in the operating conditions and abrupt faults and storage memory saving. The outcomes of our work, as well as its major novel aspect, is the design of a framework for a PHM system based on specific requirements that directly originate from the industrial field, together with indications on which techniques can be adopted to achieve such goals
    corecore