323 research outputs found

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data

    Subspace Representations and Learning for Visual Recognition

    Get PDF
    Pervasive and affordable sensor and storage technology enables the acquisition of an ever-rising amount of visual data. The ability to extract semantic information by interpreting, indexing and searching visual data is impacting domains such as surveillance, robotics, intelligence, human- computer interaction, navigation, healthcare, and several others. This further stimulates the investigation of automated extraction techniques that are more efficient, and robust against the many sources of noise affecting the already complex visual data, which is carrying the semantic information of interest. We address the problem by designing novel visual data representations, based on learning data subspace decompositions that are invariant against noise, while being informative for the task at hand. We use this guiding principle to tackle several visual recognition problems, including detection and recognition of human interactions from surveillance video, face recognition in unconstrained environments, and domain generalization for object recognition.;By interpreting visual data with a simple additive noise model, we consider the subspaces spanned by the model portion (model subspace) and the noise portion (variation subspace). We observe that decomposing the variation subspace against the model subspace gives rise to the so-called parity subspace. Decomposing the model subspace against the variation subspace instead gives rise to what we name invariant subspace. We extend the use of kernel techniques for the parity subspace. This enables modeling the highly non-linear temporal trajectories describing human behavior, and performing detection and recognition of human interactions. In addition, we introduce supervised low-rank matrix decomposition techniques for learning the invariant subspace for two other tasks. We learn invariant representations for face recognition from grossly corrupted images, and we learn object recognition classifiers that are invariant to the so-called domain bias.;Extensive experiments using the benchmark datasets publicly available for each of the three tasks, show that learning representations based on subspace decompositions invariant to the sources of noise lead to results comparable or better than the state-of-the-art

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    K-means based clustering and context quantization

    Get PDF

    Predictive decoding of neural data

    Get PDF
    In the last five decades the number of techniques available for non-invasive functional imaging has increased dramatically. Researchers today can choose from a variety of imaging modalities that include EEG, MEG, PET, SPECT, MRI, and fMRI. This doctoral dissertation offers a methodology for the reliable analysis of neural data at different levels of investigation. By using statistical learning algorithms the proposed approach allows single-trial analysis of various neural data by decoding them into variables of interest. Unbiased testing of the decoder on new samples of the data provides a generalization assessment of decoding performance reliability. Through consecutive analysis of the constructed decoder\u27s sensitivity it is possible to identify neural signal components relevant to the task of interest. The proposed methodology accounts for covariance and causality structures present in the signal. This feature makes it more powerful than conventional univariate methods which currently dominate the neuroscience field. Chapter 2 describes the generic approach toward the analysis of neural data using statistical learning algorithms. Chapter 3 presents an analysis of results from four neural data modalities: extracellular recordings, EEG, MEG, and fMRI. These examples demonstrate the ability of the approach to reveal neural data components which cannot be uncovered with conventional methods. A further extension of the methodology, Chapter 4 is used to analyze data from multiple neural data modalities: EEG and fMRI. The reliable mapping of data from one modality into the other provides a better understanding of the underlying neural processes. By allowing the spatial-temporal exploration of neural signals under loose modeling assumptions, it removes potential bias in the analysis of neural data due to otherwise possible forward model misspecification. The proposed methodology has been formalized into a free and open source Python framework for statistical learning based data analysis. This framework, PyMVPA, is described in Chapter 5

    Facial Texture Super-Resolution by Fitting 3D Face Models

    Get PDF
    This book proposes to solve the low-resolution (LR) facial analysis problem with 3D face super-resolution (FSR). A complete processing chain is presented towards effective 3D FSR in real world. To deal with the extreme challenges of incorporating 3D modeling under the ill-posed LR condition, a novel workflow coupling automatic localization of 2D facial feature points and 3D shape reconstruction is developed, leading to a robust pipeline for pose-invariant hallucination of the 3D facial texture

    Articulation estimation and real-time tracking of human hand motions

    Get PDF
    Schröder M. Articulation estimation and real-time tracking of human hand motions. Bielefeld: Universität Bielefeld; 2015.This thesis deals with the problem of estimating and tracking the full articulation of human hands. Algorithmically recovering hand articulations is a challenging problem due to the hand’s high number of degrees of freedom and the complexity of its motions. Besides the accuracy and efficiency of the hand posture estimation, hand tracking methods are faced with issues such as invasiveness, ease of deployment and sensor artifacts. In this thesis several different hand tracking approaches are examined, including marker-based optical motion capture, data-driven discriminative visual tracking and generative tracking based on articulated registration, and various contributions to these areas are presented. The problem of optimally placing reduced marker sets on a performer’s hand for optical hand motion capture is explored. A method is proposed that automatically generates functional reduced marker layouts by optimizing for their numerical stability and geometric feasibility. A data-driven discriminative tracking approach based on matching the hand’s appearance in the sensor data with an image database is investigated. In addition to an efficient nearest neighbor search for images, a combination of discriminative initialization and generative refinement is employed. The method’s applicability is demonstrated in interactive robot teleoperation. Various real human hand motions are captured and statistically analyzed to derive low-dimensional representations of hand articulations. An adaptive hand posture subspace concept is developed and integrated into a generative real-time hand tracking approach that aligns a virtual hand model with sensor point clouds based on constrained inverse kinematics. Generative hand tracking is formulated as a regularized articulated registration process, in which geometrical model fitting is combined with statistical, kinematic and temporal regularization priors. A registration concept that combines 2D and 3D alignment and explicitly accounts for occlusions and visibility constraints is devised. High-quality, non-invasive, real-time hand tracking is achieved based on this regularized articulated registration formulation

    Dimension-reduction and discrimination of neuronal multi-channel signals

    Get PDF
    Dimensionsreduktion und Trennung neuronaler Multikanal-Signale
    • …
    corecore