60,263 research outputs found

    Unsupervised text Feature Selection using memetic Dichotomous Differential Evolution

    Get PDF
    Feature Selection (FS) methods have been studied extensively in the literature, and there are a crucial component in machine learning techniques. However, unsupervised text feature selection has not been well studied in document clustering problems. Feature selection could be modelled as an optimization problem due to the large number of possible solutions that might be valid. In this paper, a memetic method that combines Differential Evolution (DE) with Simulated Annealing (SA) for unsupervised FS was proposed. Due to the use of only two values indicating the existence or absence of the feature, a binary version of differential evolution is used. A dichotomous DE was used for the purpose of the binary version, and the proposed method is named Dichotomous Differential Evolution Simulated Annealing (DDESA). This method uses dichotomous mutation instead of using the standard mutation DE to be more effective for binary purposes. The Mean Absolute Distance (MAD) filter was used as the feature subset internal evaluation measure in this paper. The proposed method was compared with other state-of-the-art methods including the standard DE combined with SA, which is named DESA in this paper, using five benchmark datasets. The F-micro, F-macro (F-scores) and Average Distance of Document to Cluster (ADDC) measures were utilized as the evaluation measures. The Reduction Rate (RR) was also used as an evaluation measure. Test results showed that the proposed DDESA outperformed the other tested methods in performing the unsupervised text feature selection

    Various Feature Selection Techniques in Type 2 Diabetic Patients for the Prediction of Cardiovascular Disease

    Get PDF
    Cardiovascular disease (CVD) is a serious but preventable complication of type 2 diabetes mellitus (T2DM) that results in substantial disease burden, increased health services use, and higher risk of premature mortality [10]. People with diabetes are also at a greatly increased risk of cardiovascular which results in sudden death, which increases year by year. Data mining is the search for relationships and global patterns that exist in large databases but are `hidden' among the vast amount of data, such as a relationship between patient data and their medical diagnosis. Usually medical databases of type 2 diabetic patients are high dimensional in nature. If a training dataset contains irrelevant and redundant features (i.e., attributes), classification analysis may produce less accurate results. In order for data mining algorithms to perform efficiently and effectively on high-dimensional data, it is imperative to remove irrelevant and redundant features. Feature selection is one of the important and frequently used data preprocessing techniques for data mining applications in medicine. Many of the research area in data mining has improved the predictive accuracy of the classifiers by applying the various techniques of feature selection This paper illustrates, the application of feature selection technique in medical databases, will enable to find small number of informative features leading to potential improvement in medical diagnosis. It is proposed to find an optimal feature subset of the PIMA Indian Diabetes Dataset using Artificial Bee Colony technique with Differential Evolution, Symmetrical Uncertainty Attribute set Evaluator and Fast Correlation-Based Filter (FCBF). Then Mutual information based feature selection is done by introducing normalized mutual information feature selection (NMIFS). And valid classes of input features are selected by applying Hybrid Fuzzy C Means algorithm (HFCM)
    • …
    corecore