793 research outputs found

    Intelligent and Improved Self-Adaptive Anomaly based Intrusion Detection System for Networks

    Get PDF
    With the advent of digital technology, computer networks have developed rapidly at an unprecedented pace contributing tremendously to social and economic development. They have become the backbone for all critical sectors and all the top Multi-National companies. Unfortunately, security threats for computer networks have increased dramatically over the last decade being much brazen and bolder. Intrusions or attacks on computers and networks are activities or attempts to jeopardize main system security objectives, which called as confidentiality, integrity and availability. They lead mostly in great financial losses, massive sensitive data leaks, thereby decreasing efficiency and the quality of productivity of an organization. There is a great need for an effective Network Intrusion Detection System (NIDS), which are security tools designed to interpret the intrusion attempts in incoming network traffic, thereby achieving a solid line of protection against inside and outside intruders. In this work, we propose to optimize a very popular soft computing tool prevalently used for intrusion detection namely Back Propagation Neural Network (BPNN) using a novel machine learning framework called “ISAGASAA”, based on Improved Self-Adaptive Genetic Algorithm (ISAGA) and Simulated Annealing Algorithm (SAA). ISAGA is our variant of standard Genetic Algorithm (GA), which is developed based on GA improved through an Adaptive Mutation Algorithm (AMA) and optimization strategies. The optimization strategies carried out are Parallel Processing (PP) and Fitness Value Hashing (FVH) that reduce execution time, convergence time and save processing power. While, SAA was incorporated to ISAGA in order to optimize its heuristic search. Experimental results based on Kyoto University benchmark dataset version 2015 demonstrate that our optimized NIDS based BPNN called “ANID BPNN-ISAGASAA” outperforms several state-of-art approaches in terms of detection rate and false positive rate. Moreover, improvement of GA through FVH and PP saves processing power and execution time. Thus, our model is very much convenient for network anomaly detection.

    A Survey on Feature Selection Algorithms

    Get PDF
    One major component of machine learning is feature analysis which comprises of mainly two processes: feature selection and feature extraction. Due to its applications in several areas including data mining, soft computing and big data analysis, feature selection has got a reasonable importance. This paper presents an introductory concept of feature selection with various inherent approaches. The paper surveys historic developments reported in feature selection with supervised and unsupervised methods. The recent developments with the state of the art in the on-going feature selection algorithms have also been summarized in the paper including their hybridizations. DOI: 10.17762/ijritcc2321-8169.16043

    Gravitational Search For Designing A Fuzzy Rule-Based Classifiers For Handwritten Signature Verification

    Get PDF
    Handwritten signatures are used in authentication systems as a universal biometric identifier. Signature authenticity verification requires building and training a classifier. This paper describes a new approach to the verification of handwritten signatures by dynamic characteristics with a fuzzy rule-based classifier. It is suggested to use the metaheuristic Gravitational Search Algorithm for the selection of the relevant features and tuning fuzzy rule parameters. The efficiency of the approach was tested with an original dataset; the type II errors in finding the signature authenticity did not exceed 0.5% for the worst model and 0.08% for the best model

    Metaheuristic-Based Neural Network Training And Feature Selector For Intrusion Detection

    Get PDF
    Intrusion Detection (ID) in the context of computer networks is an essential technique in modern defense-in-depth security strategies. As such, Intrusion Detection Systems (IDSs) have received tremendous attention from security researchers and professionals. An important concept in ID is anomaly detection, which amounts to the isolation of normal behavior of network traffic from abnormal (anomaly) events. This isolation is essentially a classification task, which led researchers to attempt the application of well-known classifiers from the area of machine learning to intrusion detection. Neural Networks (NNs) are one of the most popular techniques to perform non-linear classification, and have been extensively used in the literature to perform intrusion detection. However, the training datasets usually compose feature sets of irrelevant or redundant information, which impacts the performance of classification, and traditional learning algorithms such as backpropagation suffer from known issues, including slow convergence and the trap of local minimum. Those problems lend themselves to the realm of optimization. Considering the wide success of swarm intelligence methods in optimization problems, the main objective of this thesis is to contribute to the improvement of intrusion detection technology through the application of swarm-based optimization techniques to the basic problems of selecting optimal packet features, and optimal training of neural networks on classifying those features into normal and attack instances. To realize these objectives, the research in this thesis follows three basic stages, succeeded by extensive evaluations

    A Brief Analysis of Gravitational Search Algorithm (GSA) Publication from 2009 to May 2013

    Get PDF
    Gravitational Search Algorithm was introduced in year 2009. Since its introduction, the academic community shows a great interest on this algorith. This can be seen by the high number of publications with a short span of time. This paper analyses the publication trend of Gravitational Search Algorithm since its introduction until May 2013. The objective of this paper is to give exposure to reader the publication trend in the area of Gravitational Search Algorithm

    An improved bees algorithm local search mechanism for numerical dataset

    Get PDF
    Bees Algorithm (BA), a heuristic optimization procedure, represents one of the fundamental search techniques is based on the food foraging activities of bees. This algorithm performs a kind of exploitative neighbourhoods search combined with random explorative search. However, the main issue of BA is that it requires long computational time as well as numerous computational processes to obtain a good solution, especially in more complicated issues. This approach does not guarantee any optimum solutions for the problem mainly because of lack of accuracy. To solve this issue, the local search in the BA is investigated by Simple swap, 2-Opt and 3-Opt were proposed as Massudi methods for Bees Algorithm Feature Selection (BAFS). In this study, the proposed extension methods is 4-Opt as search neighbourhood is presented. This proposal was implemented and comprehensively compares and analyse their performances with respect to accuracy and time. Furthermore, in this study the feature selection algorithm is implemented and tested using most popular dataset from Machine Learning Repository (UCI). The obtained results from experimental work confirmed that the proposed extension of the search neighbourhood including 4-Opt approach has provided better accuracy with suitable time than the Massudi methods

    Improved Multi-Verse Optimizer Feature Selection Technique With Application To Phishing, Spam, and Denial Of Service Attacks

    Get PDF
    Intelligent classification systems proved their merits in different fields including cybersecurity. However, most cybercrime issues are characterized of being dynamic and not static classification problems where the set of discriminative features keep changing with time. This indeed requires revising the cybercrime classification system and pick a group of features that preserve or enhance its performance. Not only this but also the system compactness is regarded as an important factor to judge on the capability of any classification system where cybercrime classification systems are not an exception. The current research proposes an improved feature selection algorithm that is inspired from the well-known multi-verse optimizer (MVO) algorithm. Such an algorithm is then applied to 3 different cybercrime classification problems namely phishing websites, spam, and denial of service attacks. MVO is a population-based approach which stimulates a well-known theory in physics namely multi-verse theory. MVO uses the black and white holes principles for exploration, and wormholes principle for exploitation. A roulette selection schema is used for scientifically modeling the principles of white hole and black hole in exploration phase, which bias to the good solutions, in this case the solutions will be moved toward the best solution and probably to lose the diversity, other solutions may contain important information but didn’t get chance to be improved. Thus, this research will improve the exploration of the MVO by introducing the adaptive neighborhood search operations in updating the MVO solutions. The classification phase has been done using a classifier to evaluate the results and to validate the selected features. Empirical outcomes confirmed that the improved MVO (IMVO) algorithm is capable to enhance the search capability of MVO, and outperform other algorithm involved in comparison

    A Tent L\'evy Flying Sparrow Search Algorithm for Feature Selection: A COVID-19 Case Study

    Full text link
    The "Curse of Dimensionality" induced by the rapid development of information science, might have a negative impact when dealing with big datasets. In this paper, we propose a variant of the sparrow search algorithm (SSA), called Tent L\'evy flying sparrow search algorithm (TFSSA), and use it to select the best subset of features in the packing pattern for classification purposes. SSA is a recently proposed algorithm that has not been systematically applied to feature selection problems. After verification by the CEC2020 benchmark function, TFSSA is used to select the best feature combination to maximize classification accuracy and minimize the number of selected features. The proposed TFSSA is compared with nine algorithms in the literature. Nine evaluation metrics are used to properly evaluate and compare the performance of these algorithms on twenty-one datasets from the UCI repository. Furthermore, the approach is applied to the coronavirus disease (COVID-19) dataset, yielding the best average classification accuracy and the average number of feature selections, respectively, of 93.47% and 2.1. Experimental results confirm the advantages of the proposed algorithm in improving classification accuracy and reducing the number of selected features compared to other wrapper-based algorithms
    corecore