66,779 research outputs found

    Human Action Recognition using Factorized Spatio-Temporal Convolutional Networks

    Full text link
    Human actions in video sequences are three-dimensional (3D) spatio-temporal signals characterizing both the visual appearance and motion dynamics of the involved humans and objects. Inspired by the success of convolutional neural networks (CNN) for image classification, recent attempts have been made to learn 3D CNNs for recognizing human actions in videos. However, partly due to the high complexity of training 3D convolution kernels and the need for large quantities of training videos, only limited success has been reported. This has triggered us to investigate in this paper a new deep architecture which can handle 3D signals more effectively. Specifically, we propose factorized spatio-temporal convolutional networks (FstCN) that factorize the original 3D convolution kernel learning as a sequential process of learning 2D spatial kernels in the lower layers (called spatial convolutional layers), followed by learning 1D temporal kernels in the upper layers (called temporal convolutional layers). We introduce a novel transformation and permutation operator to make factorization in FstCN possible. Moreover, to address the issue of sequence alignment, we propose an effective training and inference strategy based on sampling multiple video clips from a given action video sequence. We have tested FstCN on two commonly used benchmark datasets (UCF-101 and HMDB-51). Without using auxiliary training videos to boost the performance, FstCN outperforms existing CNN based methods and achieves comparable performance with a recent method that benefits from using auxiliary training videos

    Unsupervised Learning from Video with Deep Neural Embeddings

    Full text link
    Because of the rich dynamical structure of videos and their ubiquity in everyday life, it is a natural idea that video data could serve as a powerful unsupervised learning signal for training visual representations in deep neural networks. However, instantiating this idea, especially at large scale, has remained a significant artificial intelligence challenge. Here we present the Video Instance Embedding (VIE) framework, which extends powerful recent unsupervised loss functions for learning deep nonlinear embeddings to multi-stream temporal processing architectures on large-scale video datasets. We show that VIE-trained networks substantially advance the state of the art in unsupervised learning from video datastreams, both for action recognition in the Kinetics dataset, and object recognition in the ImageNet dataset. We show that a hybrid model with both static and dynamic processing pathways is optimal for both transfer tasks, and provide analyses indicating how the pathways differ. Taken in context, our results suggest that deep neural embeddings are a promising approach to unsupervised visual learning across a wide variety of domains.Comment: To appear in CVPR 202

    Memory Warps for Learning Long-Term Online Video Representations

    Full text link
    This paper proposes a novel memory-based online video representation that is efficient, accurate and predictive. This is in contrast to prior works that often rely on computationally heavy 3D convolutions, ignore actual motion when aligning features over time, or operate in an off-line mode to utilize future frames. In particular, our memory (i) holds the feature representation, (ii) is spatially warped over time to compensate for observer and scene motions, (iii) can carry long-term information, and (iv) enables predicting feature representations in future frames. By exploring a variant that operates at multiple temporal scales, we efficiently learn across even longer time horizons. We apply our online framework to object detection in videos, obtaining a large 2.3 times speed-up and losing only 0.9% mAP on ImageNet-VID dataset, compared to prior works that even use future frames. Finally, we demonstrate the predictive property of our representation in two novel detection setups, where features are propagated over time to (i) significantly enhance a real-time detector by more than 10% mAP in a multi-threaded online setup and to (ii) anticipate objects in future frames

    A Survey on Content-Aware Video Analysis for Sports

    Full text link
    Sports data analysis is becoming increasingly large-scale, diversified, and shared, but difficulty persists in rapidly accessing the most crucial information. Previous surveys have focused on the methodologies of sports video analysis from the spatiotemporal viewpoint instead of a content-based viewpoint, and few of these studies have considered semantics. This study develops a deeper interpretation of content-aware sports video analysis by examining the insight offered by research into the structure of content under different scenarios. On the basis of this insight, we provide an overview of the themes particularly relevant to the research on content-aware systems for broadcast sports. Specifically, we focus on the video content analysis techniques applied in sportscasts over the past decade from the perspectives of fundamentals and general review, a content hierarchical model, and trends and challenges. Content-aware analysis methods are discussed with respect to object-, event-, and context-oriented groups. In each group, the gap between sensation and content excitement must be bridged using proper strategies. In this regard, a content-aware approach is required to determine user demands. Finally, the paper summarizes the future trends and challenges for sports video analysis. We believe that our findings can advance the field of research on content-aware video analysis for broadcast sports.Comment: Accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology (TCSVT

    DiscrimNet: Semi-Supervised Action Recognition from Videos using Generative Adversarial Networks

    Full text link
    We propose an action recognition framework using Gen- erative Adversarial Networks. Our model involves train- ing a deep convolutional generative adversarial network (DCGAN) using a large video activity dataset without la- bel information. Then we use the trained discriminator from the GAN model as an unsupervised pre-training step and fine-tune the trained discriminator model on a labeled dataset to recognize human activities. We determine good network architectural and hyperparameter settings for us- ing the discriminator from DCGAN as a trained model to learn useful representations for action recognition. Our semi-supervised framework using only appearance infor- mation achieves superior or comparable performance to the current state-of-the-art semi-supervised action recog- nition methods on two challenging video activity datasets: UCF101 and HMDB51

    CNN-based Action Recognition and Supervised Domain Adaptation on 3D Body Skeletons via Kernel Feature Maps

    Full text link
    Deep learning is ubiquitous across many areas areas of computer vision. It often requires large scale datasets for training before being fine-tuned on small-to-medium scale problems. Activity, or, in other words, action recognition, is one of many application areas of deep learning. While there exist many Convolutional Neural Network architectures that work with the RGB and optical flow frames, training on the time sequences of 3D body skeleton joints is often performed via recurrent networks such as LSTM. In this paper, we propose a new representation which encodes sequences of 3D body skeleton joints in texture-like representations derived from mathematically rigorous kernel methods. Such a representation becomes the first layer in a standard CNN network e.g., ResNet-50, which is then used in the supervised domain adaptation pipeline to transfer information from the source to target dataset. This lets us leverage the available Kinect-based data beyond training on a single dataset and outperform simple fine-tuning on any two datasets combined in a naive manner. More specifically, in this paper we utilize the overlapping classes between datasets. We associate datapoints of the same class via so-called commonality, known from the supervised domain adaptation. We demonstrate state-of-the-art results on three publicly available benchmarks

    Simultaneous Joint and Object Trajectory Templates for Human Activity Recognition from 3-D Data

    Full text link
    The availability of low-cost range sensors and the development of relatively robust algorithms for the extraction of skeleton joint locations have inspired many researchers to develop human activity recognition methods using the 3-D data. In this paper, an effective method for the recognition of human activities from the normalized joint trajectories is proposed. We represent the actions as multidimensional signals and introduce a novel method for generating action templates by averaging the samples in a "dynamic time" sense. Then in order to deal with the variations in the speed and style of performing actions, we warp the samples to the action templates by an efficient algorithm and employ wavelet filters to extract meaningful spatiotemporal features. The proposed method is also capable of modeling the human-object interactions, by performing the template generation and temporal warping procedure via the joint and object trajectories simultaneously. The experimental evaluation on several challenging datasets demonstrates the effectiveness of our method compared to the state-of-the-arts

    Shuffle and Learn: Unsupervised Learning using Temporal Order Verification

    Full text link
    In this paper, we present an approach for learning a visual representation from the raw spatiotemporal signals in videos. Our representation is learned without supervision from semantic labels. We formulate our method as an unsupervised sequential verification task, i.e., we determine whether a sequence of frames from a video is in the correct temporal order. With this simple task and no semantic labels, we learn a powerful visual representation using a Convolutional Neural Network (CNN). The representation contains complementary information to that learned from supervised image datasets like ImageNet. Qualitative results show that our method captures information that is temporally varying, such as human pose. When used as pre-training for action recognition, our method gives significant gains over learning without external data on benchmark datasets like UCF101 and HMDB51. To demonstrate its sensitivity to human pose, we show results for pose estimation on the FLIC and MPII datasets that are competitive, or better than approaches using significantly more supervision. Our method can be combined with supervised representations to provide an additional boost in accuracy.Comment: Accepted at ECCV 201
    • …
    corecore