119,166 research outputs found

    Fitting Variance Components Model and Fixed Effects Model for One-Way Analysis of Variance to Complex Survey Data

    Get PDF
    Under complex survey sampling, in particular when selection probabilities depend on the response variable (informative sampling), the sample and population distributions are different, possibly resulting in selection bias. This article is concerned with this problem by fitting two statistical models, namely: the variance components model (a two-stage model) and the fixed effects model (a single-stage model) for one-way analysis of variance, under complex survey design, for example, two-stage sampling, stratification, and unequal probability of selection, etc. Classical theory underlying the use of the two-stage model involves simple random sampling for each of the two stages. In such cases the model in the sample, after sample selection, is the same as model for the population; before sample selection. When the selection probabilities are related to the values of the response variable, standard estimates of the population model parameters may be severely biased, leading possibly to false inference. The idea behind the approach is to extract the model holding for the sample data as a function of the model in the population and of the first order inclusion probabilities. And then fit the sample model, using analysis of variance, maximum likelihood, and pseudo maximum likelihood methods of estimation. The main feature of the proposed techniques is related to their behavior in terms of the informativeness parameter. We also show that the use of the population model that ignores the informative sampling design, yields biased model fitting.The author is grateful to Gad Nathan, to the Associate Editor and to the referees for constructive comments and suggestions that helped improving the quality of the article

    Learning From Labeled And Unlabeled Data: An Empirical Study Across Techniques And Domains

    Full text link
    There has been increased interest in devising learning techniques that combine unlabeled data with labeled data ? i.e. semi-supervised learning. However, to the best of our knowledge, no study has been performed across various techniques and different types and amounts of labeled and unlabeled data. Moreover, most of the published work on semi-supervised learning techniques assumes that the labeled and unlabeled data come from the same distribution. It is possible for the labeling process to be associated with a selection bias such that the distributions of data points in the labeled and unlabeled sets are different. Not correcting for such bias can result in biased function approximation with potentially poor performance. In this paper, we present an empirical study of various semi-supervised learning techniques on a variety of datasets. We attempt to answer various questions such as the effect of independence or relevance amongst features, the effect of the size of the labeled and unlabeled sets and the effect of noise. We also investigate the impact of sample-selection bias on the semi-supervised learning techniques under study and implement a bivariate probit technique particularly designed to correct for such bias

    Learning Policies from Self-Play with Policy Gradients and MCTS Value Estimates

    Get PDF
    In recent years, state-of-the-art game-playing agents often involve policies that are trained in self-playing processes where Monte Carlo tree search (MCTS) algorithms and trained policies iteratively improve each other. The strongest results have been obtained when policies are trained to mimic the search behaviour of MCTS by minimising a cross-entropy loss. Because MCTS, by design, includes an element of exploration, policies trained in this manner are also likely to exhibit a similar extent of exploration. In this paper, we are interested in learning policies for a project with future goals including the extraction of interpretable strategies, rather than state-of-the-art game-playing performance. For these goals, we argue that such an extent of exploration is undesirable, and we propose a novel objective function for training policies that are not exploratory. We derive a policy gradient expression for maximising this objective function, which can be estimated using MCTS value estimates, rather than MCTS visit counts. We empirically evaluate various properties of resulting policies, in a variety of board games.Comment: Accepted at the IEEE Conference on Games (CoG) 201

    Causally Regularized Learning with Agnostic Data Selection Bias

    Full text link
    Most of previous machine learning algorithms are proposed based on the i.i.d. hypothesis. However, this ideal assumption is often violated in real applications, where selection bias may arise between training and testing process. Moreover, in many scenarios, the testing data is not even available during the training process, which makes the traditional methods like transfer learning infeasible due to their need on prior of test distribution. Therefore, how to address the agnostic selection bias for robust model learning is of paramount importance for both academic research and real applications. In this paper, under the assumption that causal relationships among variables are robust across domains, we incorporate causal technique into predictive modeling and propose a novel Causally Regularized Logistic Regression (CRLR) algorithm by jointly optimize global confounder balancing and weighted logistic regression. Global confounder balancing helps to identify causal features, whose causal effect on outcome are stable across domains, then performing logistic regression on those causal features constructs a robust predictive model against the agnostic bias. To validate the effectiveness of our CRLR algorithm, we conduct comprehensive experiments on both synthetic and real world datasets. Experimental results clearly demonstrate that our CRLR algorithm outperforms the state-of-the-art methods, and the interpretability of our method can be fully depicted by the feature visualization.Comment: Oral paper of 2018 ACM Multimedia Conference (MM'18

    Is Big Data Sufficient for a Reliable Detection of Non-Technical Losses?

    Get PDF
    Non-technical losses (NTL) occur during the distribution of electricity in power grids and include, but are not limited to, electricity theft and faulty meters. In emerging countries, they may range up to 40% of the total electricity distributed. In order to detect NTLs, machine learning methods are used that learn irregular consumption patterns from customer data and inspection results. The Big Data paradigm followed in modern machine learning reflects the desire of deriving better conclusions from simply analyzing more data, without the necessity of looking at theory and models. However, the sample of inspected customers may be biased, i.e. it does not represent the population of all customers. As a consequence, machine learning models trained on these inspection results are biased as well and therefore lead to unreliable predictions of whether customers cause NTL or not. In machine learning, this issue is called covariate shift and has not been addressed in the literature on NTL detection yet. In this work, we present a novel framework for quantifying and visualizing covariate shift. We apply it to a commercial data set from Brazil that consists of 3.6M customers and 820K inspection results. We show that some features have a stronger covariate shift than others, making predictions less reliable. In particular, previous inspections were focused on certain neighborhoods or customer classes and that they were not sufficiently spread among the population of customers. This framework is about to be deployed in a commercial product for NTL detection.Comment: Proceedings of the 19th International Conference on Intelligent System Applications to Power Systems (ISAP 2017

    Bias Reduction via End-to-End Shift Learning: Application to Citizen Science

    Full text link
    Citizen science projects are successful at gathering rich datasets for various applications. However, the data collected by citizen scientists are often biased --- in particular, aligned more with the citizens' preferences than with scientific objectives. We propose the Shift Compensation Network (SCN), an end-to-end learning scheme which learns the shift from the scientific objectives to the biased data while compensating for the shift by re-weighting the training data. Applied to bird observational data from the citizen science project eBird, we demonstrate how SCN quantifies the data distribution shift and outperforms supervised learning models that do not address the data bias. Compared with competing models in the context of covariate shift, we further demonstrate the advantage of SCN in both its effectiveness and its capability of handling massive high-dimensional data
    • …
    corecore