7,418 research outputs found

    Statistical interaction modeling of bovine herd behaviors

    Get PDF
    While there has been interest in modeling the group behavior of herds or flocks, much of this work has focused on simulating their collective spatial motion patterns which have not accounted for individuality in the herd and instead assume a homogenized role for all members or sub-groups of the herd. Animal behavior experts have noted that domestic animals exhibit behaviors that are indicative of social hierarchy: leader/follower type behaviors are present as well as dominance and subordination, aggression and rank order, and specific social affiliations may also exist. Both wild and domestic cattle are social species, and group behaviors are likely to be influenced by the expression of specific social interactions. In this paper, Global Positioning System coordinate fixes gathered from a herd of beef cows tracked in open fields over several days at a time are utilized to learn a model that focuses on the interactions within the herd as well as its overall movement. Using these data in this way explores the validity of existing group behavior models against actual herding behaviors. Domain knowledge, location geography and human observations, are utilized to explain the causes of these deviations from this idealized behavior

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    Multitask learning without label correspondences

    Get PDF
    We propose an algorithm to perform multitask learning where each task has potentially distinct label sets and label correspondences are not readily available. This is in contrast with existing methods which either assume that the label sets shared by different tasks are the same or that there exists a label mapping oracle. Our method directly maximizes the mutual information among the labels, and we show that the resulting objective function can be efficiently optimized using existing algorithms. Our proposed approach has a direct application for data integration with different label spaces for the purpose of classification, such as integrating Yahoo! and DMOZ web directories
    • …
    corecore