129,742 research outputs found

    Labeling the Features Not the Samples: Efficient Video Classification with Minimal Supervision

    Full text link
    Feature selection is essential for effective visual recognition. We propose an efficient joint classifier learning and feature selection method that discovers sparse, compact representations of input features from a vast sea of candidates, with an almost unsupervised formulation. Our method requires only the following knowledge, which we call the \emph{feature sign}---whether or not a particular feature has on average stronger values over positive samples than over negatives. We show how this can be estimated using as few as a single labeled training sample per class. Then, using these feature signs, we extend an initial supervised learning problem into an (almost) unsupervised clustering formulation that can incorporate new data without requiring ground truth labels. Our method works both as a feature selection mechanism and as a fully competitive classifier. It has important properties, low computational cost and excellent accuracy, especially in difficult cases of very limited training data. We experiment on large-scale recognition in video and show superior speed and performance to established feature selection approaches such as AdaBoost, Lasso, greedy forward-backward selection, and powerful classifiers such as SVM.Comment: arXiv admin note: text overlap with arXiv:1411.771

    Simulated evaluation of faceted browsing based on feature selection

    Get PDF
    In this paper we explore the limitations of facet based browsing which uses sub-needs of an information need for querying and organising the search process in video retrieval. The underlying assumption of this approach is that the search effectiveness will be enhanced if such an approach is employed for interactive video retrieval using textual and visual features. We explore the performance bounds of a faceted system by carrying out a simulated user evaluation on TRECVid data sets, and also on the logs of a prior user experiment with the system. We first present a methodology to reduce the dimensionality of features by selecting the most important ones. Then, we discuss the simulated evaluation strategies employed in our evaluation and the effect on the use of both textual and visual features. Facets created by users are simulated by clustering video shots using textual and visual features. The experimental results of our study demonstrate that the faceted browser can potentially improve the search effectiveness

    TRECVid 2011 Experiments at Dublin City University

    Get PDF
    This year the iAd-DCU team participated in three of the assigned TRECVid 2011 tasks; Semantic Indexing (SIN), Interactive Known-Item Search (KIS) and Multimedia Event Detection (MED). For the SIN task we presented three full runs using global features, local features and fusion of global, local features and relationships between concepts respectively. The evaluation results show that local features achieve better performance, with marginal gains found when introducing global features and relationships between concepts. With regard to our KIS submission, similar to our 2010 KIS experiments, we have implemented an iPad interface to a KIS video search tool. The aim of this year’s experimentation was to evaluate different display methodologies for KIS interaction. For this work, we integrate a clustering element for keyframes, which operates over MPEG-7 features using k-means clustering. In addition, we employ concept detection, not simply for search, but as a means of choosing most representative keyframes for ranked items. For our experiments we compare the baseline non-clustering system to a clustering system on a topic by topic basis. Finally, for the first time this year the iAd group at DCU has been involved in the MED Task. Two techniques are compared, employing low-level features directly and using concepts as intermediate representations. Evaluation results show promising initial results when performing event detection using concepts as intermediate representations

    Visual comparison of clustering using link-based clustering method (Lbcm) without predetermining initial centroid information

    Get PDF
    High dimensional data are difficult to view in two-dimensional plot. However, having a mechanism to reduce to a selected number of salient features that can well present the data is essential. We attempted to reduce N dimensional data to two-dimensional data using the combination of Information Gain (IG) and Principal Component Analysis (PCA) and to perform the link-based clustering which is our novel technique presented in this work in determining the linked clusters automatically using visual approach. Link-based Clustering Method (LbCM) is applied on the two-dimensional data to determine the clusters automatically. The significance of the method is that it does not require prior information such as the number of linked clusters. The approach using a combination of IG-PCA for feature selection is also useful to deal with high dimensional data. The LbCM is able to detect the number of linked clusters automatically by analyzing the X-Y coordinate positions of the points and visual information such as gaps between points and of two extreme points for both axes. Since the number of clusters is represented visually in two dimensions, LbCM performance can be compared visually

    Machine Learning for Neuroimaging with Scikit-Learn

    Get PDF
    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.Comment: Frontiers in neuroscience, Frontiers Research Foundation, 2013, pp.1
    corecore