71 research outputs found

    Using RF-DNA Fingerprints to Discriminate ZigBee Devices in an Operational Environment

    Get PDF
    This research was performed to expand AFIT\u27s Radio Frequency Distinct Native Attribute (RF-DNA) fingerprinting process to support IEEE 802.15.4 ZigBee communication network applications. Current ZigBee bit-level security measures include use of network keys and MAC lists which can be subverted through interception and spoofing using open-source hacking tools. This work addresses device discrimination using Physical (PHY) waveform alternatives to augment existing bit-level security mechanisms. ZigBee network vulnerability to outsider threats was assessed using Receiver Operating Characteristic (ROC) curves to characterize both Authorized Device ID Verification performance (granting network access to authorized users presenting true bit-level credentials) and Rogue Device Rejection performance (denying network access to unauthorized rogue devices presenting false bit-level credentials). Radio Frequency Distinct Native Attribute (RF-DNA) features are extracted from time-domain waveform responses of 2.4 GHz CC2420 ZigBee transceivers to enable humanlike device discrimination. The fingerprints were constructed using a hybrid pool of emissions collected under a range of conditions, including anechoic chamber and an indoor office environment where dynamic multi-path and signal degradation factors were present. The RF-DNA fingerprints were input to a Multiple Discriminant Analysis, Maximum Likelihood (MDA/ML) discrimination process and a 1 vs. many Looks most like? classification assessment made. The hybrid MDA model was also used for 1 vs. 1 Looks how much like? verification assessment. ZigBee Device Classification performance was assessed using both full and reduced dimensional fingerprint sets. Reduced dimensional subsets were selected using Dimensional Reduction Analysis (DRA) by rank ordering 1) pre-classification KS-Test p-values and 2) post-classification GRLVQI feature relevance values. Assessment of Zigbee device ID verification capability

    Feature Selection and Classifier Development for Radio Frequency Device Identification

    Get PDF
    The proliferation of simple and low-cost devices, such as IEEE 802.15.4 ZigBee and Z-Wave, in Critical Infrastructure (CI) increases security concerns. Radio Frequency Distinct Native Attribute (RF-DNA) Fingerprinting facilitates biometric-like identification of electronic devices emissions from variances in device hardware. Developing reliable classifier models using RF-DNA fingerprints is thus important for device discrimination to enable reliable Device Classification (a one-to-many looks most like assessment) and Device ID Verification (a one-to-one looks how much like assessment). AFITs prior RF-DNA work focused on Multiple Discriminant Analysis/Maximum Likelihood (MDA/ML) and Generalized Relevance Learning Vector Quantized Improved (GRLVQI) classifiers. This work 1) introduces a new GRLVQI-Distance (GRLVQI-D) classifier that extends prior GRLVQI work by supporting alternative distance measures, 2) formalizes a framework for selecting competing distance measures for GRLVQI-D, 3) introducing response surface methods for optimizing GRLVQI and GRLVQI-D algorithm settings, 4) develops an MDA-based Loadings Fusion (MLF) Dimensional Reduction Analysis (DRA) method for improved classifier-based feature selection, 5) introduces the F-test as a DRA method for RF-DNA fingerprints, 6) provides a phenomenological understanding of test statistics and p-values, with KS-test and F-test statistic values being superior to p-values for DRA, and 7) introduces quantitative dimensionality assessment methods for DRA subset selection

    A Comparison of RF-DNA Fingerprinting Using High/Low Value Receivers with ZigBee Devices

    Get PDF
    The ZigBee specification provides a niche capability, extending the IEEE 802.15.4 standard to provide a wireless mesh network solution. ZigBee-based devices require minimal power and provide a relatively long-distance, inexpensive, and secure means of networking. The technology is heavily utilized, providing energy management, ICS automation, and remote monitoring of Critical Infrastructure (CI) operations; it also supports application in military and civilian health care sectors. ZigBee networks lack security below the Network layer of the OSI model, leaving them vulnerable to open-source hacking tools that allow malicous attacks such as MAC spoofing or Denial of Service (DOS). A method known as RF-DNA Fingerprinting provides an additional level of security at the Physical (PHY) level, where the transmitted waveform of a device is examined, rather than its bit-level credentials which can be easily manipulated. RF-DNA fingerprinting allows a unique human-like signature for a device to be obtained and a subsequent decision made whether to grant access or deny entry to a secure network. Two NI receivers were used here to simultaneously collect RF emissions from six Atmel AT86RF230 transceivers. The time-domain response of each device was used to extract features and generate unique RF-DNA fingerprints. These fingeprints were used to perform Device Classification using two discrimination processes known as MDA/ML and GRLVQI. Each process (classifier) was used to examine both the Full-Dimensional (FD) and reduced dimensional feature-sets for the high-value PXIe and low-value USRP receivers. The reduced feature-sets were determined using DRA for both quantitative and qualitative subsets. Additionally, each classifier performed Device Classification using a hybrid interleaved set of fingerprints from both receivers

    Dimensional Reduction Analysis for Constellation-Based DNA Fingerprinting to Improve Industrial IoT Wireless Security

    Get PDF
    The Industrial Internet of Things (IIoT) market is skyrocketing towards 100 billion deployed devices and cybersecurity remains a top priority. This includes security of ZigBee communication devices that are widely used in industrial control system applications. IIoT device security is addressed using Constellation-Based Distinct Native Attribute (CB-DNA) Fingerprinting to augment conventional bit-level security mechanisms. This work expands upon recent CB-DNA “discovery” activity by identifying reduced dimensional fingerprints that increase the computational efficiency and effectiveness of device discrimination methods. The methods considered include Multiple Discriminant Analysis (MDA) and Random Forest (RndF) classification. RndF deficiencies in classification and post-classification feature selection are highlighted and addressed using a pre-classification feature selection method based on a Wilcoxon Rank Sum (WRS) test. Feature down-selection based on WRS testing proves to very reliable, with reduced feature subsets yielding cross-device discrimination performance consistent with full-dimensional feature sets, while being more computationally efficient

    Advances in SCA and RF-DNA Fingerprinting Through Enhanced Linear Regression Attacks and Application of Random Forest Classifiers

    Get PDF
    Radio Frequency (RF) emissions from electronic devices expose security vulnerabilities that can be used by an attacker to extract otherwise unobtainable information. Two realms of study were investigated here, including the exploitation of 1) unintentional RF emissions in the field of Side Channel Analysis (SCA), and 2) intentional RF emissions from physical devices in the field of RF-Distinct Native Attribute (RF-DNA) fingerprinting. Statistical analysis on the linear model fit to measured SCA data in Linear Regression Attacks (LRA) improved performance, achieving 98% success rate for AES key-byte identification from unintentional emissions. However, the presence of non-Gaussian noise required the use of a non-parametric classifier to further improve key guessing attacks. RndF based profiling attacks were successful in very high dimensional data sets, correctly guessing all 16 bytes of the AES key with a 50,000 variable dataset. With variable reduction, Random Forest still outperformed Template Attack for this data set, requiring fewer traces and achieving higher success rates with lower misclassification rate. Finally, the use of a RndF classifier is examined for intentional RF emissions from ZigBee devices to enhance security using RF-DNA fingerprinting. RndF outperformed parametric MDA/ML and non-parametric GRLVQI classifiers, providing up to GS =18.0 dB improvement (reduction in required SNR). Network penetration, measured using rogue ZigBee devices, show that the RndF method improved rogue rejection in noisier environments - gains of up to GS =18.0 dB are realized over previous methods

    Learning Robust Radio Frequency Fingerprints Using Deep Convolutional Neural Networks

    Get PDF
    Radio Frequency Fingerprinting (RFF) techniques, which attribute uniquely identifiable signal distortions to emitters via Machine Learning (ML) classifiers, are limited by fingerprint variability under different operational conditions. First, this work studied the effect of frequency channel for typical RFF techniques. Performance characterization using the multi-class Matthews Correlation Coefficient (MCC) revealed that using frequency channels other than those used to train the models leads to deterioration in MCC to under 0.05 (random guess), indicating that single-channel models are inadequate for realistic operation. Second, this work presented a novel way of studying fingerprint variability through Fingerprint Extraction through Distortion Reconstruction (FEDR), a neural network-based approach for quantifying signal distortions in a relative distortion latent space. Coupled with a Dense network, FEDR fingerprints were evaluated against common RFF techniques for up to 100 unseen classes, where FEDR achieved best performance with MCC ranging from 0.945 (5 classes) to 0.746 (100 classes), using 73% fewer training parameters than the next-best technique

    Tuning Hyperparameters for DNA-based Discrimination of Wireless Devices

    Get PDF
    The Internet of Things (IoT) and Industrial IoT (IIoT) is enabled by Wireless Personal Area Network (WPAN) devices. However, these devices increase vulnerability concerns of the IIoT and resultant Critical Infrastructure (CI) risks. Secure IIoT is enabled by both pre-attack security and post-attack forensic analysis. Radio Frequency (RF) Fingerprinting enables both pre- and post-attack security by providing serial-number level identification of devices through fingerprint characterization of their emissions. For classification and verification, research has shown high performance by employing the neural network-based Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifier. However, GRLVQI has numerous hyperparameters and tuning requires AI expertise, thus some researchers have abandoned GRLVQI for notionally simpler, but less accurate, methods. Herein, we develop a fool-proof approach for tuning AI algorithms. For demonstration, Z-Wave, an insecure low-power/cost WPAN technology, and the GRLVQI classifier are considered. Results show significant increases in accuracy (5% for classification, 50% verification) over baseline methods

    Improved Wireless Security through Physical Layer Protocol Manipulation and Radio Frequency Fingerprinting

    Get PDF
    Wireless networks are particularly vulnerable to spoofing and route poisoning attacks due to the contested transmission medium. Traditional bit-layer defenses including encryption keys and MAC address control lists are vulnerable to extraction and identity spoofing, respectively. This dissertation explores three novel strategies to leverage the wireless physical layer to improve security in low-rate wireless personal area networks. The first, physical layer protocol manipulation, identifies true transceiver design within remote devices through analysis of replies in response to packets transmitted with modified physical layer headers. Results herein demonstrate a methodology that correctly differentiates among six IEEE 802.15.4 transceiver classes with greater than 99% accuracy, regardless of claimed bit-layer identity. The second strategy, radio frequency fingerprinting, accurately identifies the true source of every wireless transmission in a network, even among devices of the same design and manufacturer. Results suggest that even low-cost signal collection receivers can achieve greater than 90% authentication accuracy within a defense system based on radio frequency fingerprinting. The third strategy, based on received signal strength quantification, can be leveraged to rapidly locate suspicious transmission sources and to perform physical security audits of critical networks. Results herein reduce mean absolute percentage error of a widely-utilized distance estimation model 20% by examining signal strength measurements from real-world networks in a military hospital and a civilian hospital

    Near Real-Time Zigbee Device Discrimination Using CB-DNA Features

    Get PDF
    Currently, Low-Rate Wireless Personal Area Networks (LR-WPAN) based on the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard are at risk due to open-source tools which allow bad actors to exploit unauthorized network access through various cyberattacks by falsifying bit-level credentials. This research investigates implementing a Radio Frequency (RF) air monitor to perform Near RealTime (NRT) discrimination of Zigbee devices using the IEEE 802.15.4 standard. The air monitor employed a Multiple Discriminant Analysis/Euclidean Distance classifier to discriminate Zigbee devices based upon Constellation-Based Distinct Native Attribute (CB-DNA) fingerprints. Through the use of CB-DNA fingerprints, Physical Layer (PHY) characteristics unique to each Zigbee device strengthen the native bit-level authentication process for LR-WPAN networks. Overall, the developed RF air monitor achieved an Average Cross-Class Percent Correct Classification of %Ctst = 99:24% during the testing of Ncls = 5 like-model BladeRF Software Defined Radios transmitting Zigbee protocol bursts. Additionally, to evaluate the NRT capability of the air monitor, a statistical analysis of Ntiming = 1000 Zigbee bursts determined the worst-case average runtime from burst detection to classification. The analysis concluded that the runtime was truntime fi 269 mSec. Ultimately, this research found that PHY characteristics provide an additional method of authentication NRT to enhance the inherent network security for Zigbee applications from cyberattacks

    An Optimization Framework for Generalized Relevance Learning Vector Quantization with Application to Z-Wave Device Fingerprinting

    Get PDF
    Z-Wave is low-power, low-cost Wireless Personal Area Network (WPAN) technology supporting Critical Infrastructure (CI) systems that are interconnected by government-to-internet pathways. Given that Z-wave is a relatively unsecure technology, Radio Frequency Distinct Native Attribute (RF-DNA) Fingerprinting is considered here to augment security by exploiting statistical features from selected signal responses. Related RF-DNA efforts include use of Multiple Discriminant Analysis (MDA) and Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) classifiers, with GRLVQI outperforming MDA using empirically determined parameters. GRLVQI is optimized here for Z-Wave using a full factorial experiment with spreadsheet search and response surface methods. Two optimization measures are developed for assessing Z-Wave discrimination: 1) Relative Accuracy Percentage (RAP) for device classification, and 2) Mean Area Under the Curve (AUCM) for device identity (ID) verification. Primary benefits of the approach include: 1) generalizability to other wireless device technologies, and 2) improvement in GRLVQI device classification and device ID verification performance
    corecore