26,453 research outputs found

    Feature Selection for Image Retrieval based on Genetic Algorithm

    Get PDF
    This paper describes the development and implementation of feature selection for content based image retrieval. We are working on CBIR system with new efficient technique. In this system, we use multi feature extraction such as colour, texture and shape. The three techniques are used for feature extraction such as colour moment, gray level co- occurrence matrix and edge histogram descriptor. To reduce curse of dimensionality and find best optimal features from feature set using feature selection based on genetic algorithm. These features are divided into similar image classes using clustering for fast retrieval and improve the execution time. Clustering technique is done by k-means algorithm. The experimental result shows feature selection using GA reduces the time for retrieval and also increases the retrieval precision, thus it gives better and faster results as compared to normal image retrieval system. The result also shows precision and recall of proposed approach compared to previous approach for each image class. The CBIR system is more efficient and better performs using feature selection based on Genetic Algorithm

    Hybrid Genetic Algorithm for Medical Image Feature Extraction and Selection

    Get PDF
    AbstractFor a hybrid medical image retrieval system, a genetic algorithm (GA) approach is presented for the selection of dimensionality reduced set of features. This system was developed in three phases. In first phase, three distinct algorithm are used to extract the vital features from the images. The algorithm devised for the extraction of the features are Texton based contour gradient extraction algorithm, Intrinsic pattern extraction algorithm and modified shift invariant feature transformation algorithm. In the second phase to identify the potential feature vector GA based feature selection is done, using a hybrid approach of “Branch and Bound Algorithm” and “Artificial Bee Colony Algorithm” using the breast cancer, Brain tumour and thyroid images. The Chi Square distance measurement is used to assess the similarity between query images and database images. A fitness function with respect Minimum description length principle were used as initial requirement for genetic algorithm. In the third phase to improve the performance of the hybrid content based medical image retrieval system diverse density based relevance feedback method is used. The term hybrid is used as this system can be used to retrieve any kind of medical image such as breast cancer, brain tumour, lung cancer, thyroid cancer and so on. This machine learning based feature selection method is used to reduce the existing system dimensionality problem. The experimental result shows that the GA driven image retrieval system selects optimal subset of feature to identify the right set of images

    Shape-based image retrieval in iconic image databases.

    Get PDF
    by Chan Yuk Ming.Thesis (M.Phil.)--Chinese University of Hong Kong, 1999.Includes bibliographical references (leaves 117-124).Abstract also in Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Content-based Image Retrieval --- p.3Chapter 1.2 --- Designing a Shape-based Image Retrieval System --- p.4Chapter 1.3 --- Information on Trademark --- p.6Chapter 1.3.1 --- What is a Trademark? --- p.6Chapter 1.3.2 --- Search for Conflicting Trademarks --- p.7Chapter 1.3.3 --- Research Scope --- p.8Chapter 1.4 --- Information on Chinese Cursive Script Character --- p.9Chapter 1.5 --- Problem Definition --- p.9Chapter 1.6 --- Contributions --- p.11Chapter 1.7 --- Thesis Organization --- p.13Chapter 2 --- Literature Review --- p.14Chapter 2.1 --- Trademark Retrieval using QBIC Technology --- p.14Chapter 2.2 --- STAR --- p.16Chapter 2.3 --- ARTISAN --- p.17Chapter 2.4 --- Trademark Retrieval using a Visually Salient Feature --- p.18Chapter 2.5 --- Trademark Recognition using Closed Contours --- p.19Chapter 2.6 --- Trademark Retrieval using a Two Stage Hierarchy --- p.19Chapter 2.7 --- Logo Matching using Negative Shape Features --- p.21Chapter 2.8 --- Chapter Summary --- p.22Chapter 3 --- Background on Shape Representation and Matching --- p.24Chapter 3.1 --- Simple Geometric Features --- p.25Chapter 3.1.1 --- Circularity --- p.25Chapter 3.1.2 --- Rectangularity --- p.26Chapter 3.1.3 --- Hole Area Ratio --- p.27Chapter 3.1.4 --- Horizontal Gap Ratio --- p.27Chapter 3.1.5 --- Vertical Gap Ratio --- p.28Chapter 3.1.6 --- Central Moments --- p.28Chapter 3.1.7 --- Major Axis Orientation --- p.29Chapter 3.1.8 --- Eccentricity --- p.30Chapter 3.2 --- Fourier Descriptors --- p.30Chapter 3.3 --- Chain Codes --- p.31Chapter 3.4 --- Seven Invariant Moments --- p.33Chapter 3.5 --- Zernike Moments --- p.35Chapter 3.6 --- Edge Direction Histogram --- p.36Chapter 3.7 --- Curvature Scale Space Representation --- p.37Chapter 3.8 --- Chapter Summary --- p.39Chapter 4 --- Genetic Algorithm for Weight Assignment --- p.42Chapter 4.1 --- Genetic Algorithm (GA) --- p.42Chapter 4.1.1 --- Basic Idea --- p.43Chapter 4.1.2 --- Genetic Operators --- p.44Chapter 4.2 --- Why GA? --- p.45Chapter 4.3 --- Weight Assignment Problem --- p.46Chapter 4.3.1 --- Integration of Image Attributes --- p.46Chapter 4.4 --- Proposed Solution --- p.47Chapter 4.4.1 --- Formalization --- p.47Chapter 4.4.2 --- Proposed Genetic Algorithm --- p.43Chapter 4.5 --- Chapter Summary --- p.49Chapter 5 --- Shape-based Trademark Image Retrieval System --- p.50Chapter 5.1 --- Problems on Existing Methods --- p.50Chapter 5.1.1 --- Edge Direction Histogram --- p.51Chapter 5.1.2 --- Boundary Based Techniques --- p.52Chapter 5.2 --- Proposed Solution --- p.53Chapter 5.2.1 --- Image Preprocessing --- p.53Chapter 5.2.2 --- Automatic Feature Extraction --- p.54Chapter 5.2.3 --- Approximated Boundary --- p.55Chapter 5.2.4 --- Integration of Shape Features and Query Processing --- p.58Chapter 5.3 --- Experimental Results --- p.58Chapter 5.3.1 --- Experiment 1: Weight Assignment using Genetic Algorithm --- p.59Chapter 5.3.2 --- Experiment 2: Speed on Feature Extraction and Retrieval --- p.62Chapter 5.3.3 --- Experiment 3: Evaluation by Precision --- p.63Chapter 5.3.4 --- Experiment 4: Evaluation by Recall for Deformed Images --- p.64Chapter 5.3.5 --- Experiment 5: Evaluation by Recall for Hand Drawn Query Trademarks --- p.66Chapter 5.3.6 --- "Experiment 6: Evaluation by Recall for Rotated, Scaled and Mirrored Images" --- p.66Chapter 5.3.7 --- Experiment 7: Comparison of Different Integration Methods --- p.68Chapter 5.4 --- Chapter Summary --- p.71Chapter 6 --- Shape-based Chinese Cursive Script Character Image Retrieval System --- p.72Chapter 6.1 --- Comparison to Trademark Retrieval Problem --- p.79Chapter 6.1.1 --- Feature Selection --- p.73Chapter 6.1.2 --- Speed of System --- p.73Chapter 6.1.3 --- Variation of Style --- p.73Chapter 6.2 --- Target of the Research --- p.74Chapter 6.3 --- Proposed Solution --- p.75Chapter 6.3.1 --- Image Preprocessing --- p.75Chapter 6.3.2 --- Automatic Feature Extraction --- p.76Chapter 6.3.3 --- Thinned Image and Linearly Normalized Image --- p.76Chapter 6.3.4 --- Edge Directions --- p.77Chapter 6.3.5 --- Integration of Shape Features --- p.78Chapter 6.4 --- Experimental Results --- p.79Chapter 6.4.1 --- Experiment 8: Weight Assignment using Genetic Algorithm --- p.79Chapter 6.4.2 --- Experiment 9: Speed on Feature Extraction and Retrieval --- p.81Chapter 6.4.3 --- Experiment 10: Evaluation by Recall for Deformed Images --- p.82Chapter 6.4.4 --- Experiment 11: Evaluation by Recall for Rotated and Scaled Images --- p.83Chapter 6.4.5 --- Experiment 12: Comparison of Different Integration Methods --- p.85Chapter 6.5 --- Chapter Summary --- p.87Chapter 7 --- Conclusion --- p.88Chapter 7.1 --- Summary --- p.88Chapter 7.2 --- Future Research --- p.89Chapter 7.2.1 --- Limitations --- p.89Chapter 7.2.2 --- Future Directions --- p.90Chapter A --- A Representative Subset of Trademark Images --- p.91Chapter B --- A Representative Subset of Cursive Script Character Images --- p.93Chapter C --- Shape Feature Extraction Toolbox for Matlab V53 --- p.95Chapter C.l --- central .moment --- p.95Chapter C.2 --- centroid --- p.96Chapter C.3 --- cir --- p.96Chapter C.4 --- ess --- p.97Chapter C.5 --- css_match --- p.100Chapter C.6 --- ecc --- p.102Chapter C.7 --- edge一directions --- p.102Chapter C.8 --- fourier-d --- p.105Chapter C.9 --- gen_shape --- p.106Chapter C.10 --- hu7 --- p.108Chapter C.11 --- isclockwise --- p.109Chapter C.12 --- moment --- p.110Chapter C.13 --- normalized-moment --- p.111Chapter C.14 --- orientation --- p.111Chapter C.15 --- resample-pts --- p.112Chapter C.16 --- rectangularity --- p.113Chapter C.17 --- trace-points --- p.114Chapter C.18 --- warp-conv --- p.115Bibliography --- p.11

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    Edge Potential Functions (EPF) and Genetic Algorithms (GA) for Edge-Based Matching of Visual Objects

    Get PDF
    Edges are known to be a semantically rich representation of the contents of a digital image. Nevertheless, their use in practical applications is sometimes limited by computation and complexity constraints. In this paper, a new approach is presented that addresses the problem of matching visual objects in digital images by combining the concept of Edge Potential Functions (EPF) with a powerful matching tool based on Genetic Algorithms (GA). EPFs can be easily calculated starting from an edge map and provide a kind of attractive pattern for a matching contour, which is conveniently exploited by GAs. Several tests were performed in the framework of different image matching applications. The results achieved clearly outline the potential of the proposed method as compared to state of the art methodologies. (c) 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Bag-of-Features Image Indexing and Classification in Microsoft SQL Server Relational Database

    Full text link
    This paper presents a novel relational database architecture aimed to visual objects classification and retrieval. The framework is based on the bag-of-features image representation model combined with the Support Vector Machine classification and is integrated in a Microsoft SQL Server database.Comment: 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF), Gdynia, Poland, 24-26 June 201

    Passively mode-locked laser using an entirely centred erbium-doped fiber

    Get PDF
    This paper describes the setup and experimental results for an entirely centred erbium-doped fiber laser with passively mode-locked output. The gain medium of the ring laser cavity configuration comprises a 3 m length of two-core optical fiber, wherein an undoped outer core region of 9.38 μm diameter surrounds a 4.00 μm diameter central core region doped with erbium ions at 400 ppm concentration. The generated stable soliton mode-locking output has a central wavelength of 1533 nm and pulses that yield an average output power of 0.33 mW with a pulse energy of 31.8 pJ. The pulse duration is 0.7 ps and the measured output repetition rate of 10.37 MHz corresponds to a 96.4 ns pulse spacing in the pulse train
    corecore