822 research outputs found

    Object-Based Supervised Machine Learning Regional-Scale Land-Cover Classification Using High Resolution Remotely Sensed Data

    Get PDF
    High spatial resolution (HR) (1m – 5m) remotely sensed data in conjunction with supervised machine learning classification are commonly used to construct land-cover classifications. Despite the increasing availability of HR data, most studies investigating HR remotely sensed data and associated classification methods employ relatively small study areas. This work therefore drew on a 2,609 km2, regional-scale study in northeastern West Virginia, USA, to investigates a number of core aspects of HR land-cover supervised classification using machine learning. Issues explored include training sample selection, cross-validation parameter tuning, the choice of machine learning algorithm, training sample set size, and feature selection. A geographic object-based image analysis (GEOBIA) approach was used. The data comprised National Agricultural Imagery Program (NAIP) orthoimagery and LIDAR-derived rasters. Stratified-statistical-based training sampling methods were found to generate higher classification accuracies than deliberative-based sampling. Subset-based sampling, in which training data is collected from a small geographic subset area within the study site, did not notably decrease the classification accuracy. For the five machine learning algorithms investigated, support vector machines (SVM), random forests (RF), k-nearest neighbors (k-NN), single-layer perceptron neural networks (NEU), and learning vector quantization (LVQ), increasing the size of the training set typically improved the overall accuracy of the classification. However, RF was consistently more accurate than the other four machine learning algorithms, even when trained from a relatively small training sample set. Recursive feature elimination (RFE), which can be used to reduce the dimensionality of a training set, was found to increase the overall accuracy of both SVM and NEU classification, however the improvement in overall accuracy diminished as sample size increased. RFE resulted in only a small improvement the overall accuracy of RF classification, indicating that RF is generally insensitive to the Hughes Phenomenon. Nevertheless, as feature selection is an optional step in the classification process, and can be discarded if it has a negative effect on classification accuracy, it should be investigated as part of best practice for supervised machine land-cover classification using remotely sensed data

    Textile Fingerprinting for Dismount Analysis in the Visible, Near, and Shortwave Infrared Domain

    Get PDF
    The ability to accurately and quickly locate an individual, or a dismount, is useful in a variety of situations and environments. A dismount\u27s characteristics such as their gender, height, weight, build, and ethnicity could be used as discriminating factors. Hyperspectral imaging (HSI) is widely used in efforts to identify materials based on their spectral signatures. More specifically, HSI has been used for skin and clothing classification and detection. The ability to detect textiles (clothing) provides a discriminating factor that can aid in a more comprehensive detection of dismounts. This thesis demonstrates the application of several feature selection methods (i.e., support vector machines with recursive feature reduction, fast correlation based filter) in highly dimensional data collected from a spectroradiometer. The classification of the data is accomplished with the selected features and artificial neural networks. A model for uniquely identifying (fingerprinting) textiles are designed, where color and composition are determined in order to fingerprint a specific textile. An artificial neural network is created based on the knowledge of the textile\u27s color and composition, providing a uniquely identifying fingerprinting of a textile. Results show 100% accuracy for color and composition classification, and 98% accuracy for the overall textile fingerprinting process

    Sparse Coding Based Feature Representation Method for Remote Sensing Images

    Get PDF
    In this dissertation, we study sparse coding based feature representation method for the classification of multispectral and hyperspectral images (HSI). The existing feature representation systems based on the sparse signal model are computationally expensive, requiring to solve a convex optimization problem to learn a dictionary. A sparse coding feature representation framework for the classification of HSI is presented that alleviates the complexity of sparse coding through sub-band construction, dictionary learning, and encoding steps. In the framework, we construct the dictionary based upon the extracted sub-bands from the spectral representation of a pixel. In the encoding step, we utilize a soft threshold function to obtain sparse feature representations for HSI. Experimental results showed that a randomly selected dictionary could be as effective as a dictionary learned from optimization. The new representation usually has a very high dimensionality requiring a lot of computational resources. In addition, the spatial information of the HSI data has not been included in the representation. Thus, we modify the framework by incorporating the spatial information of the HSI pixels and reducing the dimension of the new sparse representations. The enhanced model, called sparse coding based dense feature representation (SC-DFR), is integrated with a linear support vector machine (SVM) and a composite kernels SVM (CKSVM) classifiers to discriminate different types of land cover. We evaluated the proposed algorithm on three well known HSI datasets and compared our method to four recently developed classification methods: SVM, CKSVM, simultaneous orthogonal matching pursuit (SOMP) and image fusion and recursive filtering (IFRF). The results from the experiments showed that the proposed method can achieve better overall and average classification accuracies with a much more compact representation leading to more efficient sparse models for HSI classification. To further verify the power of the new feature representation method, we applied it to a pan-sharpened image to detect seafloor scars in shallow waters. Propeller scars are formed when boat propellers strike and break apart seagrass beds, resulting in habitat loss. We developed a robust identification system by incorporating morphological filters to detect and map the scars. Our results showed that the proposed method can be implemented on a regular basis to monitor changes in habitat characteristics of coastal waters

    Multiple Spectral-Spatial Classification Approach for Hyperspectral Data

    Get PDF
    A .new multiple classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed of the spatial region, with the corresponding class label. We propose to use spectral-spatial classifiers at the preliminary step of the marker selection procedure, each of them combining the results of a pixel-wise classification and a segmentation map. Different segmentation methods based on dissimilar principles lead to different classification results. Furthermore, a minimum spanning forest is built, where each tree is rooted on a classification -driven marker and forms a region in the spectral -spatial classification: map. Experimental results are presented for two hyperspectral airborne images. The proposed method significantly improves classification accuracies, when compared to previously proposed classification techniques

    Advances in Hyperspectral Image Classification Methods for Vegetation and Agricultural Cropland Studies

    Get PDF
    Hyperspectral data are becoming more widely available via sensors on airborne and unmanned aerial vehicle (UAV) platforms, as well as proximal platforms. While space-based hyperspectral data continue to be limited in availability, multiple spaceborne Earth-observing missions on traditional platforms are scheduled for launch, and companies are experimenting with small satellites for constellations to observe the Earth, as well as for planetary missions. Land cover mapping via classification is one of the most important applications of hyperspectral remote sensing and will increase in significance as time series of imagery are more readily available. However, while the narrow bands of hyperspectral data provide new opportunities for chemistry-based modeling and mapping, challenges remain. Hyperspectral data are high dimensional, and many bands are highly correlated or irrelevant for a given classification problem. For supervised classification methods, the quantity of training data is typically limited relative to the dimension of the input space. The resulting Hughes phenomenon, often referred to as the curse of dimensionality, increases potential for unstable parameter estimates, overfitting, and poor generalization of classifiers. This is particularly problematic for parametric approaches such as Gaussian maximum likelihoodbased classifiers that have been the backbone of pixel-based multispectral classification methods. This issue has motivated investigation of alternatives, including regularization of the class covariance matrices, ensembles of weak classifiers, development of feature selection and extraction methods, adoption of nonparametric classifiers, and exploration of methods to exploit unlabeled samples via semi-supervised and active learning. Data sets are also quite large, motivating computationally efficient algorithms and implementations. This chapter provides an overview of the recent advances in classification methods for mapping vegetation using hyperspectral data. Three data sets that are used in the hyperspectral classification literature (e.g., Botswana Hyperion satellite data and AVIRIS airborne data over both Kennedy Space Center and Indian Pines) are described in Section 3.2 and used to illustrate methods described in the chapter. An additional high-resolution hyperspectral data set acquired by a SpecTIR sensor on an airborne platform over the Indian Pines area is included to exemplify the use of new deep learning approaches, and a multiplatform example of airborne hyperspectral data is provided to demonstrate transfer learning in hyperspectral image classification. Classical approaches for supervised and unsupervised feature selection and extraction are reviewed in Section 3.3. In particular, nonlinearities exhibited in hyperspectral imagery have motivated development of nonlinear feature extraction methods in manifold learning, which are outlined in Section 3.3.1.4. Spatial context is also important in classification of both natural vegetation with complex textural patterns and large agricultural fields with significant local variability within fields. Approaches to exploit spatial features at both the pixel level (e.g., co-occurrencebased texture and extended morphological attribute profiles [EMAPs]) and integration of segmentation approaches (e.g., HSeg) are discussed in this context in Section 3.3.2. Recently, classification methods that leverage nonparametric methods originating in the machine learning community have grown in popularity. An overview of both widely used and newly emerging approaches, including support vector machines (SVMs), Gaussian mixture models, and deep learning based on convolutional neural networks is provided in Section 3.4. Strategies to exploit unlabeled samples, including active learning and metric learning, which combine feature extraction and augmentation of the pool of training samples in an active learning framework, are outlined in Section 3.5. Integration of image segmentation with classification to accommodate spatial coherence typically observed in vegetation is also explored, including as an integrated active learning system. Exploitation of multisensor strategies for augmenting the pool of training samples is investigated via a transfer learning framework in Section 3.5.1.2. Finally, we look to the future, considering opportunities soon to be provided by new paradigms, as hyperspectral sensing is becoming common at multiple scales from ground-based and airborne autonomous vehicles to manned aircraft and space-based platforms

    Spectral Textile Detection in the VNIR/SWIR Band

    Get PDF
    Dismount detection, the detection of persons on the ground and outside of a vehicle, has applications in search and rescue, security, and surveillance. Spatial dismount detection methods lose e effectiveness at long ranges, and spectral dismount detection currently relies on detecting skin pixels. In scenarios where skin is not exposed, spectral textile detection is a more effective means of detecting dismounts. This thesis demonstrates the effectiveness of spectral textile detectors on both real and simulated hyperspectral remotely sensed data. Feature selection methods determine sets of wavebands relevant to spectral textile detection. Classifiers are trained on hyperspectral contact data with the selected wavebands, and classifier parameters are optimized to improve performance on a training set. Classifiers with optimized parameters are used to classify contact data with artificially added noise and remotely-sensed hyperspectral data. The performance of optimized classifiers on hyperspectral data is measured with Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve. The best performances on the contact data are 0.892 and 0.872 for Multilayer Perceptrons (MLPs) and Support Vector Machines (SVMs), respectively. The best performances on the remotely-sensed data are AUC = 0.947 and AUC = 0.970 for MLPs and SVMs, respectively. The difference in classifier performance between the contact and remotely-sensed data is due to the greater variety of textiles represented in the contact data. Spectral textile detection is more reliable in scenarios with a small variety of textiles

    Efficacy of multi-season Sentinel-2 imagery for compositional vegetation classification

    Get PDF
    Vegetation maps are essential tools for the conservation and management of landscapes as they contain essential information for informing conservation decisions. Traditionally, maps have been created using field-based approaches which, due to limitations in costs and time, restrict the size of the area for which they can be created and frequency at which they can be updated. With the increasing availability of satellite sensors providing multi-spectral imagery with high temporal frequency, new methods for efficient and accurate vegetation mapping have been developed. The objective of this study was to investigate to what extent multi-seasonal Sentinel-2 imagery can assist in mapping complex compositional classifications at fine spatial scales. We deliberately chose a challenging case study, namely a visually and structurally homogenous scrub vegetation (known as kwongan) of Western Australia. The classification scheme consists of 24 target classes and a random 60/40 split was used for model building and validation. We compared several multi-temporal (seasonal) feature sets, consisting of numerous combinations of spectral bands, vegetation indices as well as principal component and tasselled cap transformations, as input to four machine learning classifiers (Support Vector Machines; SVM, Nearest Neighbour; NN, Random Forests; RF, and Classification Trees; CT) to separate target classes. The results show that a multi-temporal feature set combining autumn and spring images sufficiently captured the phenological differences between the classes and produced the best results, with SVM (74%) and NN (72%) classifiers returning statistically superior results compared to RF (65%) and CT (50%). The SWIR spectral bands captured during spring, the greenness indices captured during spring and the tasselled cap transformations derived from the autumn image emerged as most informative, which suggests that ecological factors (e.g. shared species, patch dynamics) occurring at a sub-pixel level likely had the biggest impact on class confusion. However, despite these challenges, the results are auspicious and suggest that seasonal Sentinel-2 imagery has the potential to predict compositional vegetation classes with high accuracy. Further work is needed to determine whether these results are replicable in other vegetation types and regions
    • …
    corecore