48 research outputs found

    A New Heuristic for Feature Selection by Consistent Biclustering

    Full text link
    Given a set of data, biclustering aims at finding simultaneous partitions in biclusters of its samples and of the features which are used for representing the samples. Consistent biclusterings allow to obtain correct classifications of the samples from the known classification of the features, and vice versa, and they are very useful for performing supervised classifications. The problem of finding consistent biclusterings can be seen as a feature selection problem, where the features that are not relevant for classification purposes are removed from the set of data, while the total number of features is maximized in order to preserve information. This feature selection problem can be formulated as a linear fractional 0-1 optimization problem. We propose a reformulation of this problem as a bilevel optimization problem, and we present a heuristic algorithm for an efficient solution of the reformulated problem. Computational experiments show that the presented algorithm is able to find better solutions with respect to the ones obtained by employing previously presented heuristic algorithms

    On Solving Selected Nonlinear Integer Programming Problems in Data Mining, Computational Biology, and Sustainability

    Get PDF
    This thesis consists of three essays concerning the use of optimization techniques to solve four problems in the fields of data mining, computational biology, and sustainable energy devices. To the best of our knowledge, the particular problems we discuss have not been previously addressed using optimization, which is a specific contribution of this dissertation. In particular, we analyze each of the problems to capture their underlying essence, subsequently demonstrating that each problem can be modeled as a nonlinear (mixed) integer program. We then discuss the design and implementation of solution techniques to locate optimal solutions to the aforementioned problems. Running throughout this dissertation is the theme of using mixed-integer programming techniques in conjunction with context-dependent algorithms to identify optimal and previously undiscovered underlying structure

    Biclustering via optimal re-ordering of data matrices in systems biology: rigorous methods and comparative studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The analysis of large-scale data sets via clustering techniques is utilized in a number of applications. Biclustering in particular has emerged as an important problem in the analysis of gene expression data since genes may only jointly respond over a subset of conditions. Biclustering algorithms also have important applications in sample classification where, for instance, tissue samples can be classified as cancerous or normal. Many of the methods for biclustering, and clustering algorithms in general, utilize simplified models or heuristic strategies for identifying the "best" grouping of elements according to some metric and cluster definition and thus result in suboptimal clusters.</p> <p>Results</p> <p>In this article, we present a rigorous approach to biclustering, OREO, which is based on the Optimal RE-Ordering of the rows and columns of a data matrix so as to globally minimize the dissimilarity metric. The physical permutations of the rows and columns of the data matrix can be modeled as either a network flow problem or a traveling salesman problem. Cluster boundaries in one dimension are used to partition and re-order the other dimensions of the corresponding submatrices to generate biclusters. The performance of OREO is tested on (a) metabolite concentration data, (b) an image reconstruction matrix, (c) synthetic data with implanted biclusters, and gene expression data for (d) colon cancer data, (e) breast cancer data, as well as (f) yeast segregant data to validate the ability of the proposed method and compare it to existing biclustering and clustering methods.</p> <p>Conclusion</p> <p>We demonstrate that this rigorous global optimization method for biclustering produces clusters with more insightful groupings of similar entities, such as genes or metabolites sharing common functions, than other clustering and biclustering algorithms and can reconstruct underlying fundamental patterns in the data for several distinct sets of data matrices arising in important biological applications.</p

    Explicit convex and concave envelopes through polyhedral subdivisions with Unstable Equilibria

    Get PDF
    In this paper, we derive explicit characterizations of convex and concave envelopes of several nonlinear functions over various subsets of a hyper-rectangle. These envelopes are obtained by identifying polyhedral subdivisions of the hyper-rectangle over which the envelopes can be constructed easily. In particular, we use these techniques to derive, in closed-form, the concave envelopes of concave-extendable supermodular functions and the convex envelopes of disjunctive convex functions.

    Reformulation Techniques and Solution Approaches for Fractional 0-1 Programs and Applications

    Get PDF
    Fractional binary programs (FPs) form a broad class of nonlinear integer optimization problems, where the objective is to optimize the sum of ratios of (linear) binary functions. FPs arise naturally in a number of important real-life applications such as scheduling, retail assortment, facility location, stochastic service systems, and machine learning, among others. This dissertation studies methods that improve the performance of solution approaches for fractional binary programs in their general structure. In particular, we first explore the links between equivalent mixed-integer linear programming (MILP) and conic quadratic programming reformulations of FPs. Thereby, we show that integrating the ideas behind these two types of reformulations of FPs allows us to push further the limits of the current state-of-the-art results and tackle larger-size problems. In practice, the parameters of an optimization problem are often subject to uncertainty. To deal with uncertainties in FPs, we extend the robust methodology to fractional binary programming. In particular, we study robust fractional binary programs (RFPs) under a wide-range of disjoint and joint uncertainty sets, where the former implies separate uncertainty sets for each numerator and denominator, and the latter accounts for different forms of inter-relatedness between them. We demonstrate that, unlike the deterministic case, single-ratio RFP is NP-hard under general polyhedral uncertainty sets. However, if the uncertainty sets are imbued with a certain structure - variants of the well-known budgeted uncertainty - the disjoint and joint single-ratio RFPs are polynomially-solvable when the deterministic counterpart is. We also propose MILP formulations for multiple-ratio RFPs and evaluate their performances by using real and synthetic data sets. One interesting application of FPs arises in feature selection which is an essential preprocessing step for many machine learning and pattern recognition systems and involves identification of the most characterizing features from the data. Notably, correlation-based and mutual-information-based feature selection problems can be reformulated as single-ratio FPs. We study approaches that ensure globally optimal solutions for medium- and reasonably large-sized instances of the aforementioned problems, where the existing MILPs in the literature fail. We perform computational experiments with diverse classes of real data sets and report encouraging results

    Correlation Clustering

    Get PDF
    Knowledge Discovery in Databases (KDD) is the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data. The core step of the KDD process is the application of a Data Mining algorithm in order to produce a particular enumeration of patterns and relationships in large databases. Clustering is one of the major data mining techniques and aims at grouping the data objects into meaningful classes (clusters) such that the similarity of objects within clusters is maximized, and the similarity of objects from different clusters is minimized. This can serve to group customers with similar interests, or to group genes with related functionalities. Currently, a challenge for clustering-techniques are especially high dimensional feature-spaces. Due to modern facilities of data collection, real data sets usually contain many features. These features are often noisy or exhibit correlations among each other. However, since these effects in different parts of the data set are differently relevant, irrelevant features cannot be discarded in advance. The selection of relevant features must therefore be integrated into the data mining technique. Since about 10 years, specialized clustering approaches have been developed to cope with problems in high dimensional data better than classic clustering approaches. Often, however, the different problems of very different nature are not distinguished from one another. A main objective of this thesis is therefore a systematic classification of the diverse approaches developed in recent years according to their task definition, their basic strategy, and their algorithmic approach. We discern as main categories the search for clusters (i) w.r.t. closeness of objects in axis-parallel subspaces, (ii) w.r.t. common behavior (patterns) of objects in axis-parallel subspaces, and (iii) w.r.t. closeness of objects in arbitrarily oriented subspaces (so called correlation cluster). For the third category, the remaining parts of the thesis describe novel approaches. A first approach is the adaptation of density-based clustering to the problem of correlation clustering. The starting point here is the first density-based approach in this field, the algorithm 4C. Subsequently, enhancements and variations of this approach are discussed allowing for a more robust, more efficient, or more effective behavior or even find hierarchies of correlation clusters and the corresponding subspaces. The density-based approach to correlation clustering, however, is fundamentally unable to solve some issues since an analysis of local neighborhoods is required. This is a problem in high dimensional data. Therefore, a novel method is proposed tackling the correlation clustering problem in a global approach. Finally, a method is proposed to derive models for correlation clusters to allow for an interpretation of the clusters and facilitate more thorough analysis in the corresponding domain science. Finally, possible applications of these models are proposed and discussed.Knowledge Discovery in Databases (KDD) ist der Prozess der automatischen Extraktion von Wissen aus großen Datenmengen, das gültig, bisher unbekannt und potentiell nützlich für eine gegebene Anwendung ist. Der zentrale Schritt des KDD-Prozesses ist das Anwenden von Data Mining-Techniken, um nützliche Beziehungen und Zusammenhänge in einer aufbereiteten Datenmenge aufzudecken. Eine der wichtigsten Techniken des Data Mining ist die Cluster-Analyse (Clustering). Dabei sollen die Objekte einer Datenbank in Gruppen (Cluster) partitioniert werden, so dass Objekte eines Clusters möglichst ähnlich und Objekte verschiedener Cluster möglichst unähnlich zu einander sind. Hier können beispielsweise Gruppen von Kunden identifiziert werden, die ähnliche Interessen haben, oder Gruppen von Genen, die ähnliche Funktionalitäten besitzen. Eine aktuelle Herausforderung für Clustering-Verfahren stellen hochdimensionale Feature-Räume dar. Reale Datensätze beinhalten dank moderner Verfahren zur Datenerhebung häufig sehr viele Merkmale (Features). Teile dieser Merkmale unterliegen oft Rauschen oder Abhängigkeiten und können meist nicht im Vorfeld ausgesiebt werden, da diese Effekte in Teilen der Datenbank jeweils unterschiedlich ausgeprägt sind. Daher muss die Wahl der Features mit dem Data-Mining-Verfahren verknüpft werden. Seit etwa 10 Jahren werden vermehrt spezialisierte Clustering-Verfahren entwickelt, die mit den in hochdimensionalen Feature-Räumen auftretenden Problemen besser umgehen können als klassische Clustering-Verfahren. Hierbei wird aber oftmals nicht zwischen den ihrer Natur nach im Einzelnen sehr unterschiedlichen Problemen unterschieden. Ein Hauptanliegen der Dissertation ist daher eine systematische Einordnung der in den letzten Jahren entwickelten sehr diversen Ansätze nach den Gesichtspunkten ihrer jeweiligen Problemauffassung, ihrer grundlegenden Lösungsstrategie und ihrer algorithmischen Vorgehensweise. Als Hauptkategorien unterscheiden wir hierbei die Suche nach Clustern (1.) hinsichtlich der Nähe von Cluster-Objekten in achsenparallelen Unterräumen, (2.) hinsichtlich gemeinsamer Verhaltensweisen (Mustern) von Cluster-Objekten in achsenparallelen Unterräumen und (3.) hinsichtlich der Nähe von Cluster-Objekten in beliebig orientierten Unterräumen (sogenannte Korrelations-Cluster). Für die dritte Kategorie sollen in den weiteren Teilen der Dissertation innovative Lösungsansätze entwickelt werden. Ein erster Lösungsansatz basiert auf einer Erweiterung des dichte-basierten Clustering auf die Problemstellung des Korrelations-Clustering. Den Ausgangspunkt bildet der erste dichtebasierte Ansatz in diesem Bereich, der Algorithmus 4C. Anschließend werden Erweiterungen und Variationen dieses Ansatzes diskutiert, die robusteres, effizienteres oder effektiveres Verhalten aufweisen oder sogar Hierarchien von Korrelations-Clustern und den entsprechenden Unterräumen finden. Die dichtebasierten Korrelations-Cluster-Verfahren können allerdings einige Probleme grundsätzlich nicht lösen, da sie auf der Analyse lokaler Nachbarschaften beruhen. Dies ist in hochdimensionalen Feature-Räumen problematisch. Daher wird eine weitere Neuentwicklung vorgestellt, die das Korrelations-Cluster-Problem mit einer globalen Methode angeht. Schließlich wird eine Methode vorgestellt, die Cluster-Modelle für Korrelationscluster ableitet, so dass die gefundenen Cluster interpretiert werden können und tiefergehende Untersuchungen in der jeweiligen Fachdisziplin zielgerichtet möglich sind. Mögliche Anwendungen dieser Modelle werden abschließend vorgestellt und untersucht

    Generalizations of the Multicut Problem for Computer Vision

    Get PDF
    Graph decomposition has always been a very important concept in machine learning and computer vision. Many tasks like image and mesh segmentation, community detection in social networks, as well as object tracking and human pose estimation can be formulated as a graph decomposition problem. The multicut problem in particular is a popular model to optimize for a decomposition of a given graph. Its main advantage is that no prior knowledge about the number of components or their sizes is required. However, it has several limitations, which we address in this thesis: Firstly, the multicut problem allows to specify only cost or reward for putting two direct neighbours into distinct components. This limits the expressibility of the cost function. We introduce special edges into the graph that allow to define cost or reward for putting any two vertices into distinct components, while preserving the original set of feasible solutions. We show that this considerably improves the quality of image and mesh segmentations. Second, multicut is notorious to be NP-hard for general graphs, that limits its applications to small super-pixel graphs. We define and implement two primal feasible heuristics to solve the problem. They do not provide any guarantees on the runtime or quality of solutions, but in practice show good convergence behaviour. We perform an extensive comparison on multiple graphs of different sizes and properties. Third, we extend the multicut framework by introducing node labels, so that we can jointly optimize for graph decomposition and nodes classification by means of exactly the same optimization algorithm, thus eliminating the need to hand-tune optimizers for a particular task. To prove its universality we applied it to diverse computer vision tasks, including human pose estimation, multiple object tracking, and instance-aware semantic segmentation. We show that we can improve the results over the prior art using exactly the same data as in the original works. Finally, we use employ multicuts in two applications: 1) a client-server tool for interactive video segmentation: After the pre-processing of the video a user draws strokes on several frames and a time-coherent segmentation of the entire video is performed on-the-fly. 2) we formulate a method for simultaneous segmentation and tracking of living cells in microscopy data. This task is challenging as cells split and our algorithm accounts for this, creating parental hierarchies. We also present results on multiple model fitting. We find models in data heavily corrupted by noise by finding components defining these models using higher order multicuts. We introduce an interesting extension that allows our optimization to pick better hyperparameters for each discovered model. In summary, this thesis extends the multicut problem in different directions, proposes algorithms for optimization, and applies it to novel data and settings.Die Zerlegung von Graphen ist ein sehr wichtiges Konzept im maschinellen Lernen und maschinellen Sehen. Viele Aufgaben wie Bild- und Gittersegmentierung, Kommunitätserkennung in sozialen Netzwerken, sowie Objektverfolgung und Schätzung von menschlichen Posen können als Graphzerlegungsproblem formuliert werden. Der Mehrfachschnitt-Ansatz ist ein populäres Mittel um über die Zerlegungen eines gegebenen Graphen zu optimieren. Sein größter Vorteil ist, dass kein Vorwissen über die Anzahl an Komponenten und deren Größen benötigt wird. Dennoch hat er mehrere ernsthafte Limitierungen, welche wir in dieser Arbeit behandeln: Erstens erlaubt der klassische Mehrfachschnitt nur die Spezifikation von Kosten oder Belohnungen für die Trennung von zwei Nachbarn in verschiedene Komponenten. Dies schränkt die Ausdrucksfähigkeit der Kostenfunktion ein und führt zu suboptimalen Ergebnissen. Wir fügen dem Graphen spezielle Kanten hinzu, welche es erlauben, Kosten oder Belohnungen für die Trennung von beliebigen Paaren von Knoten in verschiedene Komponenten zu definieren, ohne die Menge an zulässigen Lösungen zu verändern. Wir zeigen, dass dies die Qualität von Bild- und Gittersegmentierungen deutlich verbessert. Zweitens ist das Mehrfachschnittproblem berüchtigt dafür NP-schwer für allgemeine Graphen zu sein, was die Anwendungen auf kleine superpixel-basierte Graphen einschränkt. Wir definieren und implementieren zwei primal-zulässige Heuristiken um das Problem zu lösen. Diese geben keine Garantien bezüglich der Laufzeit oder der Qualität der Lösungen, zeigen in der Praxis jedoch gutes Konvergenzverhalten. Wir führen einen ausführlichen Vergleich auf vielen Graphen verschiedener Größen und Eigenschaften durch. Drittens erweitern wir den Mehrfachschnitt-Ansatz um Knoten-Kennzeichnungen, sodass wir gemeinsam über Zerlegungen und Knoten-Klassifikationen mit dem gleichen Optimierungs-Algorithmus optimieren können. Dadurch wird der Bedarf der Feinabstimmung einzelner aufgabenspezifischer Löser aus dem Weg geräumt. Um die Allgemeingültigkeit dieses Ansatzes zu überprüfen, haben wir ihn auf verschiedenen Aufgaben des maschinellen Sehens, einschließlich menschliche Posenschätzung, Mehrobjektverfolgung und instanz-bewusste semantische Segmentierung, angewandt. Wir zeigen, dass wir Resultate von vorherigen Arbeiten mit exakt den gleichen Daten verbessern können. Abschließend benutzen wir Mehrfachschnitte in zwei Anwendungen: 1) Ein Nutzer-Server-Werkzeug für interaktive Video Segmentierung: Nach der Vorbearbeitung eines Videos zeichnet der Nutzer Striche auf mehrere Einzelbilder und eine zeit-kohärente Segmentierung des gesamten Videos wird in Echtzeit berechnet. 2) Wir formulieren eine Methode für simultane Segmentierung und Verfolgung von lebenden Zellen in Mikroskopie-Aufnahmen. Diese Aufgabe ist anspruchsvoll, da Zellen sich aufteilen und unser Algorithmus dies in der Erstellung von Eltern-Hierarchien mitberücksichtigen muss. Wir präsentieren außerdem Resultate zur Mehrmodellanpassung. Wir berechnen Modelle in stark verrauschten Daten indem wir mithilfe von Mehrfachschnitten höherer Ordnung Komponenten finden, die diesen Modellen entsprechen. Wir führen eine interessante Erweiterung ein, die es unserer Optimierung erlaubt, bessere Hyperparameter für jedes entdeckte Modell auszuwählen. Zusammenfassend erweitert diese Arbeit den Mehrfachschnitt-Ansatz in unterschiedlichen Richtungen, schlägt Algorithmen zur Inferenz in den resultierenden Modellen vor und wendet ihn auf neuartigen Daten und Umgebungen an

    ANALYZING SOCIAL MEDIA CONTENTS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore