80,429 research outputs found

    Interpretable Aircraft Engine Diagnostic via Expert Indicator Aggregation

    Full text link
    Detecting early signs of failures (anomalies) in complex systems is one of the main goal of preventive maintenance. It allows in particular to avoid actual failures by (re)scheduling maintenance operations in a way that optimizes maintenance costs. Aircraft engine health monitoring is one representative example of a field in which anomaly detection is crucial. Manufacturers collect large amount of engine related data during flights which are used, among other applications, to detect anomalies. This article introduces and studies a generic methodology that allows one to build automatic early signs of anomaly detection in a way that builds upon human expertise and that remains understandable by human operators who make the final maintenance decision. The main idea of the method is to generate a very large number of binary indicators based on parametric anomaly scores designed by experts, complemented by simple aggregations of those scores. A feature selection method is used to keep only the most discriminant indicators which are used as inputs of a Naive Bayes classifier. This give an interpretable classifier based on interpretable anomaly detectors whose parameters have been optimized indirectly by the selection process. The proposed methodology is evaluated on simulated data designed to reproduce some of the anomaly types observed in real world engines.Comment: arXiv admin note: substantial text overlap with arXiv:1408.6214, arXiv:1409.4747, arXiv:1407.088

    Online Tool Condition Monitoring Based on Parsimonious Ensemble+

    Full text link
    Accurate diagnosis of tool wear in metal turning process remains an open challenge for both scientists and industrial practitioners because of inhomogeneities in workpiece material, nonstationary machining settings to suit production requirements, and nonlinear relations between measured variables and tool wear. Common methodologies for tool condition monitoring still rely on batch approaches which cannot cope with a fast sampling rate of metal cutting process. Furthermore they require a retraining process to be completed from scratch when dealing with a new set of machining parameters. This paper presents an online tool condition monitoring approach based on Parsimonious Ensemble+, pENsemble+. The unique feature of pENsemble+ lies in its highly flexible principle where both ensemble structure and base-classifier structure can automatically grow and shrink on the fly based on the characteristics of data streams. Moreover, the online feature selection scenario is integrated to actively sample relevant input attributes. The paper presents advancement of a newly developed ensemble learning algorithm, pENsemble+, where online active learning scenario is incorporated to reduce operator labelling effort. The ensemble merging scenario is proposed which allows reduction of ensemble complexity while retaining its diversity. Experimental studies utilising real-world manufacturing data streams and comparisons with well known algorithms were carried out. Furthermore, the efficacy of pENsemble was examined using benchmark concept drift data streams. It has been found that pENsemble+ incurs low structural complexity and results in a significant reduction of operator labelling effort.Comment: this paper has been published by IEEE Transactions on Cybernetic

    An Incremental Construction of Deep Neuro Fuzzy System for Continual Learning of Non-stationary Data Streams

    Full text link
    Existing FNNs are mostly developed under a shallow network configuration having lower generalization power than those of deep structures. This paper proposes a novel self-organizing deep FNN, namely DEVFNN. Fuzzy rules can be automatically extracted from data streams or removed if they play limited role during their lifespan. The structure of the network can be deepened on demand by stacking additional layers using a drift detection method which not only detects the covariate drift, variations of input space, but also accurately identifies the real drift, dynamic changes of both feature space and target space. DEVFNN is developed under the stacked generalization principle via the feature augmentation concept where a recently developed algorithm, namely gClass, drives the hidden layer. It is equipped by an automatic feature selection method which controls activation and deactivation of input attributes to induce varying subsets of input features. A deep network simplification procedure is put forward using the concept of hidden layer merging to prevent uncontrollable growth of dimensionality of input space due to the nature of feature augmentation approach in building a deep network structure. DEVFNN works in the sample-wise fashion and is compatible for data stream applications. The efficacy of DEVFNN has been thoroughly evaluated using seven datasets with non-stationary properties under the prequential test-then-train protocol. It has been compared with four popular continual learning algorithms and its shallow counterpart where DEVFNN demonstrates improvement of classification accuracy. Moreover, it is also shown that the concept drift detection method is an effective tool to control the depth of network structure while the hidden layer merging scenario is capable of simplifying the network complexity of a deep network with negligible compromise of generalization performance.Comment: This paper has been published in IEEE Transactions on Fuzzy System

    Time series kernel similarities for predicting Paroxysmal Atrial Fibrillation from ECGs

    Get PDF
    We tackle the problem of classifying Electrocardiography (ECG) signals with the aim of predicting the onset of Paroxysmal Atrial Fibrillation (PAF). Atrial fibrillation is the most common type of arrhythmia, but in many cases PAF episodes are asymptomatic. Therefore, in order to help diagnosing PAF, it is important to design procedures for detecting and, more importantly, predicting PAF episodes. We propose a method for predicting PAF events whose first step consists of a feature extraction procedure that represents each ECG as a multi-variate time series. Successively, we design a classification framework based on kernel similarities for multi-variate time series, capable of handling missing data. We consider different approaches to perform classification in the original space of the multi-variate time series and in an embedding space, defined by the kernel similarity measure. We achieve a classification accuracy comparable with state of the art methods, with the additional advantage of detecting the PAF onset up to 15 minutes in advance

    Mining Heterogeneous Multivariate Time-Series for Learning Meaningful Patterns: Application to Home Health Telecare

    Full text link
    For the last years, time-series mining has become a challenging issue for researchers. An important application lies in most monitoring purposes, which require analyzing large sets of time-series for learning usual patterns. Any deviation from this learned profile is then considered as an unexpected situation. Moreover, complex applications may involve the temporal study of several heterogeneous parameters. In that paper, we propose a method for mining heterogeneous multivariate time-series for learning meaningful patterns. The proposed approach allows for mixed time-series -- containing both pattern and non-pattern data -- such as for imprecise matches, outliers, stretching and global translating of patterns instances in time. We present the early results of our approach in the context of monitoring the health status of a person at home. The purpose is to build a behavioral profile of a person by analyzing the time variations of several quantitative or qualitative parameters recorded through a provision of sensors installed in the home
    • …
    corecore