4,287 research outputs found

    Meta learning of bounds on the Bayes classifier error

    Full text link
    Meta learning uses information from base learners (e.g. classifiers or estimators) as well as information about the learning problem to improve upon the performance of a single base learner. For example, the Bayes error rate of a given feature space, if known, can be used to aid in choosing a classifier, as well as in feature selection and model selection for the base classifiers and the meta classifier. Recent work in the field of f-divergence functional estimation has led to the development of simple and rapidly converging estimators that can be used to estimate various bounds on the Bayes error. We estimate multiple bounds on the Bayes error using an estimator that applies meta learning to slowly converging plug-in estimators to obtain the parametric convergence rate. We compare the estimated bounds empirically on simulated data and then estimate the tighter bounds on features extracted from an image patch analysis of sunspot continuum and magnetogram images.Comment: 6 pages, 3 figures, to appear in proceedings of 2015 IEEE Signal Processing and SP Education Worksho

    Structured variable selection in support vector machines

    Get PDF
    When applying the support vector machine (SVM) to high-dimensional classification problems, we often impose a sparse structure in the SVM to eliminate the influences of the irrelevant predictors. The lasso and other variable selection techniques have been successfully used in the SVM to perform automatic variable selection. In some problems, there is a natural hierarchical structure among the variables. Thus, in order to have an interpretable SVM classifier, it is important to respect the heredity principle when enforcing the sparsity in the SVM. Many variable selection methods, however, do not respect the heredity principle. In this paper we enforce both sparsity and the heredity principle in the SVM by using the so-called structured variable selection (SVS) framework originally proposed in Yuan, Joseph and Zou (2007). We minimize the empirical hinge loss under a set of linear inequality constraints and a lasso-type penalty. The solution always obeys the desired heredity principle and enjoys sparsity. The new SVM classifier can be efficiently fitted, because the optimization problem is a linear program. Another contribution of this work is to present a nonparametric extension of the SVS framework, and we propose nonparametric heredity SVMs. Simulated and real data are used to illustrate the merits of the proposed method.Comment: Published in at http://dx.doi.org/10.1214/07-EJS125 the Electronic Journal of Statistics (http://www.i-journals.org/ejs/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Regularization and Bayesian Learning in Dynamical Systems: Past, Present and Future

    Full text link
    Regularization and Bayesian methods for system identification have been repopularized in the recent years, and proved to be competitive w.r.t. classical parametric approaches. In this paper we shall make an attempt to illustrate how the use of regularization in system identification has evolved over the years, starting from the early contributions both in the Automatic Control as well as Econometrics and Statistics literature. In particular we shall discuss some fundamental issues such as compound estimation problems and exchangeability which play and important role in regularization and Bayesian approaches, as also illustrated in early publications in Statistics. The historical and foundational issues will be given more emphasis (and space), at the expense of the more recent developments which are only briefly discussed. The main reason for such a choice is that, while the recent literature is readily available, and surveys have already been published on the subject, in the author's opinion a clear link with past work had not been completely clarified.Comment: Plenary Presentation at the IFAC SYSID 2015. Submitted to Annual Reviews in Contro

    Comment on "Support Vector Machines with Applications"

    Full text link
    Comment on "Support Vector Machines with Applications" [math.ST/0612817]Comment: Published at http://dx.doi.org/10.1214/088342306000000475 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore