252 research outputs found

    Innovation in manufacturing through digital technologies and applications: Thoughts and Reflections on Industry 4.0

    Get PDF
    The rapid pace of developments in digital technologies offers many opportunities to increase the efficiency, flexibility and sophistication of manufacturing processes; including the potential for easier customisation, lower volumes and rapid changeover of products within the same manufacturing cell or line. A number of initiatives on this theme have been proposed around the world to support national industries under names such as Industry 4.0 (Industrie 4.0 in Germany, Made-in-China in China and Made Smarter in the UK). This book presents an overview of the state of art and upcoming developments in digital technologies pertaining to manufacturing. The starting point is an introduction on Industry 4.0 and its potential for enhancing the manufacturing process. Later on moving to the design of smart (that is digitally driven) business processes which are going to rely on sensing of all relevant parameters, gathering, storing and processing the data from these sensors, using computing power and intelligence at the most appropriate points in the digital workflow including application of edge computing and parallel processing. A key component of this workflow is the application of Artificial Intelligence and particularly techniques in Machine Learning to derive actionable information from this data; be it real-time automated responses such as actuating transducers or informing human operators to follow specified standard operating procedures or providing management data for operational and strategic planning. Further consideration also needs to be given to the properties and behaviours of particular machines that are controlled and materials that are transformed during the manufacturing process and this is sometimes referred to as Operational Technology (OT) as opposed to IT. The digital capture of these properties and behaviours can then be used to define so-called Cyber Physical Systems. Given the power of these digital technologies it is of paramount importance that they operate safely and are not vulnerable to malicious interference. Industry 4.0 brings unprecedented cybersecurity challenges to manufacturing and the overall industrial sector and the case is made here that new codes of practice are needed for the combined Information Technology and Operational Technology worlds, but with a framework that should be native to Industry 4.0. Current computing technologies are also able to go in other directions than supporting the digital ‘sense to action’ process described above. One of these is to use digital technologies to enhance the ability of the human operators who are still essential within the manufacturing process. One such technology, that has recently become accessible for widespread adoption, is Augmented Reality, providing operators with real-time additional information in situ with the machines that they interact with in their workspace in a hands-free mode. Finally, two linked chapters discuss the specific application of digital technologies to High Pressure Die Casting (HDPC) of Magnesium components. Optimizing the HPDC process is a key task for increasing productivity and reducing defective parts and the first chapter provides an overview of the HPDC process with attention to the most common defects and their sources. It does this by first looking at real-time process control mechanisms, understanding the various process variables and assessing their impact on the end product quality. This understanding drives the choice of sensing methods and the associated smart digital workflow to allow real-time control and mitigation of variation in the identified variables. Also, data from this workflow can be captured and used for the design of optimised dies and associated processes

    Detection and Analysis of Molten Aluminium Cleanliness Using a Pulsed Ultrasound System

    Get PDF
    This document presents the development of a solution for analysis and detection of molten metal quality deviations. The data is generated by an MV20/20, an ultrasound sensor that detects inclusions - molten metal defects that affect the quality of the product. The data is then labelled by assessing the sample using metallography. The analysis provides the sample outcome and dominant inclusion. The business objectives for the project include the real-time classification of anomalous events by means of a supervised classifier for the metal quality outcome, and a classifier for the inclusion type responsible for low quality. The adopted methodology involves descriptive, diagnostic and predictive analytics. Once the data is statistically profiled, it is standardised and scaled to unit variance in order to compensate for different units in the descriptors. Principal components analysis is applied as a dimensionality reduction technique, and it is found that the first three components account for 99.6% of the variance of the dataset. In order for the system to have predictive ability, two modelling approaches are considered, namely Response Surface Methodology and supervised machine learning. Supervised machine learning is preferred as it offers more flexibility than a polynomial approximator, and it is more accurate. Four classifiers are built, namely logistic regression, support vector machine, multi-layer perceptron and a radial basis function network. The hyperparameters are tuned using 10- fold repeated cross-validation. The multi-layer perceptron offers the best performance in all cases. For determining the quality outcome of a cast (passed or failed), all the models perform according to business targets for accuracy, precision, sensitivity and specificity. For the inclusion type classification, the multi-layer perceptron performs within 5% of the target metrics. In order to optimise the model, a grid search is performed for optimal parameter tuning. The results offer negligible improvement, which indicates that the model has reached a global maximum in the parameter optimisation in the hyperspace. It is noted that the source of variance in the inclusion type data respondent is attributed to operator error during labelling of the dataset, among several other sources of variance. It is therefore recommended that a Gage R&R be performed in order to identify sources of variation, among other improvement recommendations. From a research perspective, a vision system is recommended for assessing metal colour, texture and other visual properties in order to provide more insights. Another possible research extension recommended is the use of Fourier Transform Infrared Spectroscopy in determining signatures of the clean metal and different inclusions for detection. The project is regarded as a success, as the business metrics are met by the solution

    Technologies and Applications for Big Data Value

    Get PDF
    This open access book explores cutting-edge solutions and best practices for big data and data-driven AI applications for the data-driven economy. It provides the reader with a basis for understanding how technical issues can be overcome to offer real-world solutions to major industrial areas. The book starts with an introductory chapter that provides an overview of the book by positioning the following chapters in terms of their contributions to technology frameworks which are key elements of the Big Data Value Public-Private Partnership and the upcoming Partnership on AI, Data and Robotics. The remainder of the book is then arranged in two parts. The first part “Technologies and Methods” contains horizontal contributions of technologies and methods that enable data value chains to be applied in any sector. The second part “Processes and Applications” details experience reports and lessons from using big data and data-driven approaches in processes and applications. Its chapters are co-authored with industry experts and cover domains including health, law, finance, retail, manufacturing, mobility, and smart cities. Contributions emanate from the Big Data Value Public-Private Partnership and the Big Data Value Association, which have acted as the European data community's nucleus to bring together businesses with leading researchers to harness the value of data to benefit society, business, science, and industry. The book is of interest to two primary audiences, first, undergraduate and postgraduate students and researchers in various fields, including big data, data science, data engineering, and machine learning and AI. Second, practitioners and industry experts engaged in data-driven systems, software design and deployment projects who are interested in employing these advanced methods to address real-world problems

    Machine Learning in Manufacturing towards Industry 4.0: From ‘For Now’ to ‘Four-Know’

    Get PDF
    While attracting increasing research attention in science and technology, Machine Learning (ML) is playing a critical role in the digitalization of manufacturing operations towards Industry 4.0. Recently, ML has been applied in several fields of production engineering to solve a variety of tasks with different levels of complexity and performance. However, in spite of the enormous number of ML use cases, there is no guidance or standard for developing ML solutions from ideation to deployment. This paper aims to address this problem by proposing an ML application roadmap for the manufacturing industry based on the state-of-the-art published research on the topic. First, this paper presents two dimensions for formulating ML tasks, namely, ’Four-Know’ (Know-what, Know-why, Know-when, Know-how) and ’Four-Level’ (Product, Process, Machine, System). These are used to analyze ML development trends in manufacturing. Then, the paper provides an implementation pipeline starting from the very early stages of ML solution development and summarizes the available ML methods, including supervised learning methods, semi-supervised methods, unsupervised methods, and reinforcement methods, along with their typical applications. Finally, the paper discusses the current challenges during ML applications and provides an outline of possible directions for future developments

    The 1st Advanced Manufacturing Student Conference (AMSC21) Chemnitz, Germany 15–16 July 2021

    Get PDF
    The Advanced Manufacturing Student Conference (AMSC) represents an educational format designed to foster the acquisition and application of skills related to Research Methods in Engineering Sciences. Participating students are required to write and submit a conference paper and are given the opportunity to present their findings at the conference. The AMSC provides a tremendous opportunity for participants to practice critical skills associated with scientific publication. Conference Proceedings of the conference will benefit readers by providing updates on critical topics and recent progress in the advanced manufacturing engineering and technologies and, at the same time, will aid the transfer of valuable knowledge to the next generation of academics and practitioners. *** The first AMSC Conference Proceeding (AMSC21) addressed the following topics: Advances in “classical” Manufacturing Technologies, Technology and Application of Additive Manufacturing, Digitalization of Industrial Production (Industry 4.0), Advances in the field of Cyber-Physical Systems, Virtual and Augmented Reality Technologies throughout the entire product Life Cycle, Human-machine-environment interaction and Management and life cycle assessment.:- Advances in “classical” Manufacturing Technologies - Technology and Application of Additive Manufacturing - Digitalization of Industrial Production (Industry 4.0) - Advances in the field of Cyber-Physical Systems - Virtual and Augmented Reality Technologies throughout the entire product Life Cycle - Human-machine-environment interaction - Management and life cycle assessmen

    Advances on Mechanics, Design Engineering and Manufacturing III

    Get PDF
    This open access book gathers contributions presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2020), held as a web conference on June 2–4, 2020. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is organized into four main parts, reflecting the focus and primary themes of the conference. The contributions presented here not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of the methods discussed and future interdisciplinary collaborations

    Information-rich quality controls prediction model based on non-destructive analysis for porosity determination of AISI H13 produced by electron beam melting

    Get PDF
    The number of materials processed via additive manufacturing (AM) technologies has rapidly increased over the past decade. As of these emerging technologies, electron beam powder bed fusion (EB-PBF) process is becoming an enabling technology to manufacture complex-shaped components made of thermal-cracking sensitive materials, such as AISI H13 hot-work tool steel. In this process, a proper combination of process parameters should be employed to produce dense parts. Therefore, one of the first steps in the EB-PBF part production is to perform the process parameter optimization procedure. However, the conventional procedure that includes the image analysis of the cross-section of several as-built samples is time-consuming and costly. Hence, a new model is introduced in this work to find the best combination of EB-PBF process parameters concisely and cost-effectively. A correlation between the surface topography, the internal porosity, and the process parameters is established. The correlation between the internal porosity and the melting process parameters has been described by a high robust model (R-adj(2) = 0.91) as well as the correlation of topography parameters and melting process parameters (R-adj(2) = 0.77-0.96). Finally, a robust and information-rich prediction model for evaluating the internal porosity is proposed (R-adj(2) = 0.95) based on in situ surface topography characterization and process parameters. The information-rich prediction model allows obtaining more robust and representative model, yielding an improvement of about 4% with respect to the process parameter-based model. The model is experimentally validated showing adequate performances, with a RMSE of 2% on the predicted porosity. This result can support process and quality control designers in optimizing resource usage towards zero-defect manufacturing by reducing scraps and waste from destructive quality controls and reworks
    • 

    corecore