749 research outputs found

    Using Ensemble Technique to Improve Multiclass Classification

    Get PDF
    Many real world applications inevitably contain datasets that have multiclass structure characterized by imbalance classes, redundant and irrelevant features that degrade performance of classifiers. Minority classes in the datasets are treated as outliers’ classes. The research aimed at establishing the role of ensemble technique in improving performance of multiclass classification. Multiclass datasets were transformed to binary and the datasets resampled using Synthetic minority oversampling technique (SMOTE) algorithm.  Relevant features of the datasets were selected by use of an ensemble filter method developed using Correlation, Information Gain, Gain-Ratio and ReliefF filter selection methods. Adaboost and Random subspace learning algorithms were combined using Voting methodology utilizing random forest as the base classifier. The classifiers were evaluated using 10 fold stratified cross validation. The model showed better performance in terms of outlier detection and classification prediction for multiclass problem. The model outperformed other well-known existing classification and outlier detection algorithms such as Naïve bayes, KNN, Bagging, JRipper, Decision trees, RandomTree and Random forest. The study findings established that ensemble technique, resampling datasets and decomposing multiclass results in an improved classification performance as well as enhanced detection of minority outlier (rare) classes. Keywords: Multiclass, Classification, Outliers, Ensemble, Learning Algorithm DOI: 10.7176/JIEA/9-5-04 Publication date: August 31st 201

    Software defect prediction using maximal information coefficient and fast correlation-based filter feature selection

    Get PDF
    Software quality ensures that applications that are developed are failure free. Some modern systems are intricate, due to the complexity of their information processes. Software fault prediction is an important quality assurance activity, since it is a mechanism that correctly predicts the defect proneness of modules and classifies modules that saves resources, time and developers’ efforts. In this study, a model that selects relevant features that can be used in defect prediction was proposed. The literature was reviewed and it revealed that process metrics are better predictors of defects in version systems and are based on historic source code over time. These metrics are extracted from the source-code module and include, for example, the number of additions and deletions from the source code, the number of distinct committers and the number of modified lines. In this research, defect prediction was conducted using open source software (OSS) of software product line(s) (SPL), hence process metrics were chosen. Data sets that are used in defect prediction may contain non-significant and redundant attributes that may affect the accuracy of machine-learning algorithms. In order to improve the prediction accuracy of classification models, features that are significant in the defect prediction process are utilised. In machine learning, feature selection techniques are applied in the identification of the relevant data. Feature selection is a pre-processing step that helps to reduce the dimensionality of data in machine learning. Feature selection techniques include information theoretic methods that are based on the entropy concept. This study experimented the efficiency of the feature selection techniques. It was realised that software defect prediction using significant attributes improves the prediction accuracy. A novel MICFastCR model, which is based on the Maximal Information Coefficient (MIC) was developed to select significant attributes and Fast Correlation Based Filter (FCBF) to eliminate redundant attributes. Machine learning algorithms were then run to predict software defects. The MICFastCR achieved the highest prediction accuracy as reported by various performance measures.School of ComputingPh. D. (Computer Science

    LC an effective classification based association rule mining algorithm

    Get PDF
    Classification using association rules is a research field in data mining that primarily uses association rule discovery techniques in classification benchmarks. It has been confirmed by many research studies in the literature that classification using association tends to generate more predictive classification systems than traditional classification data mining techniques like probabilistic, statistical and decision tree. In this thesis, we introduce a novel data mining algorithm based on classification using association called “Looking at the Class” (LC), which can be used in for mining a range of classification data sets. Unlike known algorithms in classification using the association approach such as Classification based on Association rule (CBA) system and Classification based on Predictive Association (CPAR) system, which merge disjoint items in the rule learning step without anticipating the class label similarity, the proposed algorithm merges only items with identical class labels. This saves too many unnecessary items combining during the rule learning step, and consequently results in large saving in computational time and memory. Furthermore, the LC algorithm uses a novel prediction procedure that employs multiple rules to make the prediction decision instead of a single rule. The proposed algorithm has been evaluated thoroughly on real world security data sets collected using an automated tool developed at Huddersfield University. The security application which we have considered in this thesis is about categorizing websites based on their features to legitimate or fake which is a typical binary classification problem. Also, experimental results on a number of UCI data sets have been conducted and the measures used for evaluation is the classification accuracy, memory usage, and others. The results show that LC algorithm outperformed traditional classification algorithms such as C4.5, PART and Naïve Bayes as well as known classification based association algorithms like CBA with respect to classification accuracy, memory usage, and execution time on most data sets we consider

    Mining of textual databases within the product development process

    Get PDF

    Sentiment Analysis of Teachers Using Social Information in Educational Platform Environments

    Get PDF
    © 2020 World Scientific Publishing Company. Electronic version of an article published as International Journal on Artificial Intelligence Tools, Vol. 29, No. 02, 2040004 (2020): https://doi.org/10.1142/S0218213020400047.Learners’ opinions constitute an important source of information that can be useful to teachers and educational instructors in order to improve learning procedures and training activities. By analyzing learners’ actions and extracting data related to their learning behavior, educators can specify proper learning approaches to stimulate learners’ interest and contribute to constructive monitoring of learning progress during the course or to improve future courses. Learners-generated content and their feedback and comments can provide indicative information about the educational procedures that they attended and the training activities that they participated in. Educational systems must possess mechanisms to analyze learners’ comments and automatically specify their opinions and attitude towards the courses and the learning activities that are offered to them. This paper describes a Greek language sentiment analysis system that analyzes texts written in Greek language and generates feature vectors which together with classification algorithms give us the opportunity to classify Greek texts based on the personal opinion and the degree of satisfaction expressed. The sentiment analysis module has been integrated into the hybrid educational systems of the Greek school network that offers life-long learning courses. The module offers a wide range of possibilities to lecturers, policymakers and educational institutes that participate in the training procedure and offers life-long learning courses, to understand how their learners perceive learning activities and specify what aspects of the learning activities they liked and disliked. The experimental study show quite interesting results regarding the performance of the sentiment analysis methodology and the specification of users’ opinions and satisfaction. The feature analysis demonstrates interesting findings regarding the characteristics that provide indicative information for opinion analysis and embeddings combined with deep learning approaches yield satisfactory results.Peer reviewe

    Data mining for heart failure : an investigation into the challenges in real life clinical datasets

    Get PDF
    Clinical data presents a number of challenges including missing data, class imbalance, high dimensionality and non-normal distribution. A motivation for this research is to investigate and analyse the manner in which the challenges affect the performance of algorithms. The challenges were explored with the help of a real life heart failure clinical dataset known as Hull LifeLab, obtained from a live cardiology clinic at the Hull Royal Infirmary Hospital. A Clinical Data Mining Workflow (CDMW) was designed with three intuitive stages, namely, descriptive, predictive and prescriptive. The naming of these stages reflects the nature of the analysis that is possible within each stage; therefore a number of different algorithms are employed. Most algorithms require the data to be distributed in a normal manner. However, the distribution is not explicitly used within the algorithms. Approaches based on Bayes use the properties of the distributions very explicitly, and thus provides valuable insight into the nature of the data.The first stage of the analysis is to investigate if the assumptions made for Bayes hold, e.g. the strong independence assumption and the assumption of a Gaussian distribution. The next stage is to investigate the role of missing values. Results found that imputation does not affect the performance as much as those records which are initially complete. These records are often not outliers, but contain problem variables. A method was developed to identify these. The effect of skews in the data was also investigated within the CDMW. However, it was found that methods based on Bayes were able to handle these, albeit with a small variability in performance. The thesis provides an insight into the reasons why clinical data often causes problems. Even the issue of imbalanced classes is not an issue, for Bayes is independent of this

    Evaluation of Supervised Machine Learning for Classifying Video Traffic

    Get PDF
    Operational deployment of machine learning based classifiers in real-world networks has become an important area of research to support automated real-time quality of service decisions by Internet service providers (ISPs) and more generally, network administrators. As the Internet has evolved, multimedia applications, such as voice over Internet protocol (VoIP), gaming, and video streaming, have become commonplace. These traffic types are sensitive to network perturbations, e.g. jitter and delay. Automated quality of service (QoS) capabilities offer a degree of relief by prioritizing network traffic without human intervention; however, they rely on the integration of real-time traffic classification to identify applications. Accordingly, researchers have begun to explore various techniques to incorporate into real-world networks. One method that shows promise is the use of machine learning techniques trained on sub-flows – a small number of consecutive packets selected from different phases of the full application flow. Generally, research on machine learning classifiers was based on statistics derived from full traffic flows, which can limit their effectiveness (recall and precision) if partial data captures are encountered by the classifier. In real-world networks, partial data captures can be caused by unscheduled restarts/reboots of the classifier or data capture capabilities, network interruptions, or application errors. Research on the use of machine learning algorithms trained on sub-flows to classify VoIP and gaming traffic has shown promise, even when partial data captures are encountered. This research extends that work by applying machine learning algorithms trained on multiple sub-flows to classification of video streaming traffic. Results from this research indicate that sub-flow classifiers have much higher and more consistent recall and precision than full flow classifiers when applied to video traffic. Moreover, the application of ensemble methods, specifically Bagging and adaptive boosting (AdaBoost) further improves recall and precision for sub-flow classifiers. Findings indicate sub-flow classifiers based on AdaBoost in combination with the C4.5 algorithm exhibited the best performance with the most consistent results for classification of video streaming traffic
    • 

    corecore