8,414 research outputs found

    Recurrent Neural Networks with Top-k Gains for Session-based Recommendations

    Full text link
    RNNs have been shown to be excellent models for sequential data and in particular for data that is generated by users in an session-based manner. The use of RNNs provides impressive performance benefits over classical methods in session-based recommendations. In this work we introduce novel ranking loss functions tailored to RNNs in the recommendation setting. The improved performance of these losses over alternatives, along with further tricks and refinements described in this work, allow for an overall improvement of up to 35% in terms of MRR and Recall@20 over previous session-based RNN solutions and up to 53% over classical collaborative filtering approaches. Unlike data augmentation-based improvements, our method does not increase training times significantly. We further demonstrate the performance gain of the RNN over baselines in an online A/B test.Comment: CIKM'18, authors' versio

    Feature based-Learning with Data Increasing for video Recommendation and Computing

    Get PDF
    Image content analysis is crucial for determining the reliability of a link between two videos. Video characteristics are increasingly being used in image and video representation as custom pre-trained picture and video convolutional neural networks become generally available. People also have limited access to video editing tools for a variety of reasons, such as ownership and privacy concerns. You don't need to go back to the source video data to use the refined features again. An affine transformation, for instance, can be used to map a well-studied function onto an unfamiliar domain. To do this, we use a unique triplet failure in conjunction with the re-learning strategy. We propose a contemporary data augmentation method that may be applied to functionality on various frames for videos as an alternative to employing specific motion data. Extensive testing on the well-known Hulu content-based Video Relevance challenge demonstrates the process's efficacy and provides solid evidence of state-of-the-art performance

    Sample Mixed-Based Data Augmentation for Domestic Audio Tagging

    Get PDF
    Audio tagging has attracted increasing attention since last decade and has various potential applications in many fields. The objective of audio tagging is to predict the labels of an audio clip. Recently deep learning methods have been applied to audio tagging and have achieved state-of-the-art performance, which provides a poor generalization ability on new data. However due to the limited size of audio tagging data such as DCASE data, the trained models tend to result in overfitting of the network. Previous data augmentation methods such as pitch shifting, time stretching and adding background noise do not show much improvement in audio tagging. In this paper, we explore the sample mixed data augmentation for the domestic audio tagging task, including mixup, SamplePairing and extrapolation. We apply a convolutional recurrent neural network (CRNN) with attention module with log-scaled mel spectrum as a baseline system. In our experiments, we achieve an state-of-the-art of equal error rate (EER) of 0.10 on DCASE 2016 task4 dataset with mixup approach, outperforming the baseline system without data augmentation.Comment: submitted to the workshop of Detection and Classification of Acoustic Scenes and Events 2018 (DCASE 2018), 19-20 November 2018, Surrey, U

    Adversarial Training Towards Robust Multimedia Recommender System

    Full text link
    With the prevalence of multimedia content on the Web, developing recommender solutions that can effectively leverage the rich signal in multimedia data is in urgent need. Owing to the success of deep neural networks in representation learning, recent advance on multimedia recommendation has largely focused on exploring deep learning methods to improve the recommendation accuracy. To date, however, there has been little effort to investigate the robustness of multimedia representation and its impact on the performance of multimedia recommendation. In this paper, we shed light on the robustness of multimedia recommender system. Using the state-of-the-art recommendation framework and deep image features, we demonstrate that the overall system is not robust, such that a small (but purposeful) perturbation on the input image will severely decrease the recommendation accuracy. This implies the possible weakness of multimedia recommender system in predicting user preference, and more importantly, the potential of improvement by enhancing its robustness. To this end, we propose a novel solution named Adversarial Multimedia Recommendation (AMR), which can lead to a more robust multimedia recommender model by using adversarial learning. The idea is to train the model to defend an adversary, which adds perturbations to the target image with the purpose of decreasing the model's accuracy. We conduct experiments on two representative multimedia recommendation tasks, namely, image recommendation and visually-aware product recommendation. Extensive results verify the positive effect of adversarial learning and demonstrate the effectiveness of our AMR method. Source codes are available in https://github.com/duxy-me/AMR.Comment: TKD
    corecore