17,185 research outputs found

    Quantifying and Explaining Machine Learning Uncertainty in Predictive Process Monitoring: An Operations Research Perspective

    Full text link
    This paper introduces a comprehensive, multi-stage machine learning methodology that effectively integrates information systems and artificial intelligence to enhance decision-making processes within the domain of operations research. The proposed framework adeptly addresses common limitations of existing solutions, such as the neglect of data-driven estimation for vital production parameters, exclusive generation of point forecasts without considering model uncertainty, and lacking explanations regarding the sources of such uncertainty. Our approach employs Quantile Regression Forests for generating interval predictions, alongside both local and global variants of SHapley Additive Explanations for the examined predictive process monitoring problem. The practical applicability of the proposed methodology is substantiated through a real-world production planning case study, emphasizing the potential of prescriptive analytics in refining decision-making procedures. This paper accentuates the imperative of addressing these challenges to fully harness the extensive and rich data resources accessible for well-informed decision-making

    Perceptions of surveillance: exploring feelings held by Black community leaders in Boston toward camera enforcement of roadway infractions

    Get PDF
    Roadway camera enforcement programs have been found to effectively reduce vehicle travel speeds, as well as decrease the number and severity of collisions. Despite a wealth of evaluative research confirming this enforcement approach's aptitude at promoting safer roadway behavior, fewer than 50 % of US states currently host camera-based programs. Public opposition is frequently cited as the cause for the slow proliferation of this enforcement strategy. However, with public demand for police reform having an increasing presence on the national political stage, how might feelings toward camera technology currently stand among groups most marginalized by existing enforcement systems, and how might those feelings vary by type of enforcement application? Through a series of focus groups, this work centers Black voices on matters of surveillance and roadway enforcement by discussing sentiment toward camera programs with Black community leaders. This discussion is contextually situated in Boston, Massachusetts, where legislation that would allow for camera enforcement of roadway infractions is actively being deliberated in the State Senate. Findings culminate in a list of right-sizing and procedural recommendations for policy makers hoping to gain support for camera enforcement, improve roadway safety, and advance racial equity in our systems of policing and governance

    Integrative multi-omics analysis for the effect of genetic alterations in cancer xenograft and organoid models

    Get PDF
    Department of Biomedical EngineeringDNA damage is a well-recognized factor in the development and progression of cancer. Numerous studies on genetic changes associated with cancer or the DNA repair pathway have been conducted, however, there is still a need for additional research on their function. The establishment of patient-derived xenografts or organoids for the purpose of testing functional genomic approaches is the subject of ongoing research. According to model-specific characteristics, it is not fully understood how these attempts to simulate patient cancer differ from original cancer. To comprehend the distinction between genuine patient cancer and these patient-derived disease models in more depth, multi-omics analysis is required to comprehend the overall genotypes, phenotypes, and environmental variables. Depending on the characteristics of each disease model, distinct omics analysis approaches and factors must be considered. In addition, care must be taken to avoid technical errors when integrating omics data generated by different sequencing equipment. There is currently no golden rule for data integration, but several approaches are being developed. It is crucial to determine the function of genes linked with the DNA repair pathway because these genes contribute to the induction or prevention of cancer. In chapter 1, I identified the interaction between MRE11 and TRIP13 through proximity labeling combined with the SILAC method which is quantitative proteomics using metabolic labeling. TRIP13 depletion doesn???t affect the nuclease activity and conformation of the MRN complex but directly inhibits the interaction of MDC1 with MRN complex and MDC1 recruitment on the DNA damage site. TRIP13 degradation with mirin treatment shows additive effects on ATM signaling activation. In conclusion, TRIP13 regulates immediate-early DNA damage sensing through MRE11 and ATM signaling independently of mirin. When assessing the functional genomic approach using patient-derived disease models, it is essential to determine which aspects of the models' correlation to actual cancer should be properly considered. In chapter 2, I found there are a few overlapped deleterious somatic mutations of the PDX model and their original tumor. I suspected novel mutagen exposure during PDX establishment or sample contamination. However, germline mutations of PDX models are well conserved from original tumors, and their mutational signatures of PDX also mimic that of their tumor. Though the number of overlapped mutations between the PDX model and their tumor was few, brain tumor-specific mutations are found in PDX samples. Especially, histone methylation- and cilia-related gene mutations are enriched in PDX samples. While it suggested these mutated genes are needed for maintaining the stemness of brain tumor PDX model or PDX model would be more appropriate for the samples with high heterogeneity, I have presented precautions and considerations in PDX model genome analysis. Multi-omics analysis that takes into consideration genetic, expressive, and clinical aspects can provide important information for the study of diseases with complicated etiologies, such as cancer, and can contribute to the development of diagnosis and treatment. To utilize colorectal cancer organoids for Companion Diagnostics (CDx), in chapter 3, I characterized patient-derived colorectal cancer (CRC) organoids through well-known genomic markers such as Tumor mutation burden (TMB), Microsatellite instability (MSI) and propose a novel grouping method using sharing same mutation site. The classification of CRC patients was more detailed combined with consensus molecular subtype (CMS) classifications. Additionally, I extract the expression features of the patients who experience recurrence or metastasis after first-line chemotherapy treatment with reference to clinical data. Drug response of CRC organoids by patient group and knockdown of the extracted features in the selected organoids would be validated in further study. In summary, with this dissertation, I conducted functional research on the DNA repair pathway of cancer-related genes, as well as the genetic analysis between patient-derived xenograft and original tumors, and introduced a novel perspective on the diagnosis and treatment of colorectal cancer patients using patient-derived organoids through multi-omics analysis.ope

    Transcriptional networks of transient cell states during human prefrontal cortex development

    Get PDF
    The human brain is divided into various anatomical regions that control and coordinate unique functions. The prefrontal cortex (PFC) is a large brain region that comprises a range of neuronal and non-neuronal cell types, sharing extensive interconnections with subcortical areas, and plays a critical role in cognition and memory. A timely appearance of distinct cell types through embryonic development is crucial for an anatomically perfect and functional brain. Direct tracing of cell fate development in the human brain is not possible, but single-cell transcriptome sequencing (scRNA-seq) datasets provide the opportunity to dissect cellular heterogeneity and its molecular regulators. Here, using scRNA-seq data of human PFC from fetal stages, we elucidate distinct transient cell states during PFC development and their underlying gene regulatory circuitry. We further identified that distinct intermediate cell states consist of specific gene regulatory modules essential to reach terminal fate using discrete developmental paths. Moreover, using in silico gene knock-out and over-expression analysis, we validated crucial gene regulatory components during the lineage specification of oligodendrocyte progenitor cells. Our study illustrates unique intermediate states and specific gene interaction networks that warrant further investigation for their functional contribution to typical brain development and discusses how this knowledge can be harvested for therapeutic intervention in challenging neurodevelopmental disorders

    In vitro investigation of the effect of disulfiram on hypoxia induced NFκB, epithelial to mesenchymal transition and cancer stem cells in glioblastoma cell lines

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.Glioblastoma multiforme (GBM) is one of the most aggressive and lethal cancers with a poor prognosis. Advances in the treatment of GBM are limited due to several resistance mechanisms and limited drug delivery into the central nervous system (CNS) compartment by the blood-brain barrier (BBB) and by actions of the normal brain to counteract tumour-targeting medications. Hypoxia is common in malignant brain tumours such as GBM and plays a significant role in tumour pathobiology. It is widely accepted that hypoxia is a major driver of GBM malignancy. Although it has been confirmed that hypoxia induces GBM stem-like-cells (GSCs), which are highly invasive and resistant to all chemotherapeutic agents, the detailed molecular pathways linking hypoxia, GSC traits and chemoresistance remain obscure. Evidence shows that hypoxia induces cancer stem cell phenotypes via epithelial-to-mesenchymal transition (EMT), promoting therapeutic resistance in most cancers, including GBM. This study demonstrated that spheroid cultured GBM cells consist of a large population of hypoxic cells with CSC and EMT characteristics. GSCs are chemo-resistant and displayed increased levels of HIFs and NFκB activity. Similarly, the hypoxia cultured GBM cells manifested GSC traits, chemoresistance and invasiveness. These results suggest that hypoxia is responsible for GBM stemness, chemoresistance and invasiveness. GBM cells transfected with nuclear factor kappa B-p65 (NFκB-p65) subunit exhibited CSC and EMT markers indicating the essential role of NFκB in maintaining GSC phenotypes. The study also highlighted the significance of NFκB in driving chemoresistance, invasiveness, and the potential role of NFκB as the central regulator of hypoxia-induced stemness in GBM cells. GSC population has the ability of self-renewal, cancer initiation and development of secondary heterogeneous cancer. The very poor prognosis of GBM could largely be attributed to the existence of GSCs, which promote tumour propagation, maintenance, radio- and chemoresistance and local infiltration. In this study, we used Disulfiram (DS), a drug used for more than 65 years in alcoholism clinics, in combination with copper (Cu) to target the NFκB pathway, reverse chemoresistance and block invasion in GSCs. The obtained results showed that DS/Cu is highly cytotoxic to GBM cells and completely eradicated the resistant CSC population at low dose levels in vitro. DS/Cu inhibited the migration and invasion of hypoxia-induced CSC and EMT like GBM cells at low nanomolar concentrations. DS is an FDA approved drug with low toxicity to normal tissues and can pass through the BBB. Further research may lead to the quick translation of DS into cancer clinics and provide new therapeutic options to improve treatment outcomes in GBM patients

    3D Computer Graphics and Virtual Reality

    Get PDF
    This chapter is dedicated to the description of 3D computer graphics used for the needs of virtual reality. Virtual reality (VR) is the use of computer technology to create a 3D virtual environment. The chapter presents some graphical features used in an environment as well as an explanation of good design practice. The chapter contains also the description of lighting settings, 3D objects/models and virtualization sequence, camera, and scenes where the wheelchair simulator is used as an example of the implementation environment

    Estudo da remodelagem reversa miocárdica através da análise proteómica do miocárdio e do líquido pericárdico

    Get PDF
    Valve replacement remains as the standard therapeutic option for aortic stenosis patients, aiming at abolishing pressure overload and triggering myocardial reverse remodeling. However, despite the instant hemodynamic benefit, not all patients show complete regression of myocardial hypertrophy, being at higher risk for adverse outcomes, such as heart failure. The current comprehension of the biological mechanisms underlying an incomplete reverse remodeling is far from complete. Furthermore, definitive prognostic tools and ancillary therapies to improve the outcome of the patients undergoing valve replacement are missing. To help abridge these gaps, a combined myocardial (phospho)proteomics and pericardial fluid proteomics approach was followed, taking advantage of human biopsies and pericardial fluid collected during surgery and whose origin anticipated a wealth of molecular information contained therein. From over 1800 and 750 proteins identified, respectively, in the myocardium and in the pericardial fluid of aortic stenosis patients, a total of 90 dysregulated proteins were detected. Gene annotation and pathway enrichment analyses, together with discriminant analysis, are compatible with a scenario of increased pro-hypertrophic gene expression and protein synthesis, defective ubiquitinproteasome system activity, proclivity to cell death (potentially fed by complement activity and other extrinsic factors, such as death receptor activators), acute-phase response, immune system activation and fibrosis. Specific validation of some targets through immunoblot techniques and correlation with clinical data pointed to complement C3 β chain, Muscle Ring Finger protein 1 (MuRF1) and the dual-specificity Tyr-phosphorylation regulated kinase 1A (DYRK1A) as potential markers of an incomplete response. In addition, kinase prediction from phosphoproteome data suggests that the modulation of casein kinase 2, the family of IκB kinases, glycogen synthase kinase 3 and DYRK1A may help improve the outcome of patients undergoing valve replacement. Particularly, functional studies with DYRK1A+/- cardiomyocytes show that this kinase may be an important target to treat cardiac dysfunction, provided that mutant cells presented a different response to stretch and reduced ability to develop force (active tension). This study opens many avenues in post-aortic valve replacement reverse remodeling research. In the future, gain-of-function and/or loss-of-function studies with isolated cardiomyocytes or with animal models of aortic bandingdebanding will help disclose the efficacy of targeting the surrogate therapeutic targets. Besides, clinical studies in larger cohorts will bring definitive proof of complement C3, MuRF1 and DYRK1A prognostic value.A substituição da válvula aórtica continua a ser a opção terapêutica de referência para doentes com estenose aórtica e visa a eliminação da sobrecarga de pressão, desencadeando a remodelagem reversa miocárdica. Contudo, apesar do benefício hemodinâmico imediato, nem todos os pacientes apresentam regressão completa da hipertrofia do miocárdio, ficando com maior risco de eventos adversos, como a insuficiência cardíaca. Atualmente, os mecanismos biológicos subjacentes a uma remodelagem reversa incompleta ainda não são claros. Além disso, não dispomos de ferramentas de prognóstico definitivos nem de terapias auxiliares para melhorar a condição dos pacientes indicados para substituição da válvula. Para ajudar a resolver estas lacunas, uma abordagem combinada de (fosfo)proteómica e proteómica para a caracterização, respetivamente, do miocárdio e do líquido pericárdico foi seguida, tomando partido de biópsias e líquidos pericárdicos recolhidos em ambiente cirúrgico. Das mais de 1800 e 750 proteínas identificadas, respetivamente, no miocárdio e no líquido pericárdico dos pacientes com estenose aórtica, um total de 90 proteínas desreguladas foram detetadas. As análises de anotação de genes, de enriquecimento de vias celulares e discriminativa corroboram um cenário de aumento da expressão de genes pro-hipertróficos e de síntese proteica, um sistema ubiquitina-proteassoma ineficiente, uma tendência para morte celular (potencialmente acelerada pela atividade do complemento e por outros fatores extrínsecos que ativam death receptors), com ativação da resposta de fase aguda e do sistema imune, assim como da fibrose. A validação de alguns alvos específicos através de immunoblot e correlação com dados clínicos apontou para a cadeia β do complemento C3, a Muscle Ring Finger protein 1 (MuRF1) e a dual-specificity Tyr-phosphoylation regulated kinase 1A (DYRK1A) como potenciais marcadores de uma resposta incompleta. Por outro lado, a predição de cinases a partir do fosfoproteoma, sugere que a modulação da caseína cinase 2, a família de cinases do IκB, a glicogénio sintase cinase 3 e da DYRK1A pode ajudar a melhorar a condição dos pacientes indicados para intervenção. Em particular, a avaliação funcional de cardiomiócitos DYRK1A+/- mostraram que esta cinase pode ser um alvo importante para tratar a disfunção cardíaca, uma vez que os miócitos mutantes responderam de forma diferente ao estiramento e mostraram uma menor capacidade para desenvolver força (tensão ativa). Este estudo levanta várias hipóteses na investigação da remodelagem reversa. No futuro, estudos de ganho e/ou perda de função realizados em cardiomiócitos isolados ou em modelos animais de banding-debanding da aorta ajudarão a testar a eficácia de modular os potenciais alvos terapêuticos encontrados. Além disso, estudos clínicos em coortes de maior dimensão trarão conclusões definitivas quanto ao valor de prognóstico do complemento C3, MuRF1 e DYRK1A.Programa Doutoral em Biomedicin
    corecore