2,943 research outputs found

    A Comparative Study on Polygonal Mesh Simplification Algorithms

    Get PDF
    Polygonal meshes are a common way of representing three dimensional surface models in many different areas of computer graphics and geometry processing. However, with the evolution of the technology, polygonal models are becoming more and more complex. As the complexity of the models increase, the visual approximation to the real world objects get better but there is a trade-off between the cost of processing these models and better visual approximation. In order to reduce this cost, the number of polygons in a model can be reduced by mesh simplification algorithms. These algorithms are widely used such that nearly all of the popular mesh editing libraries include at least one of them. In this work, polygonal simplification algorithms that are embedded in open source libraries: CGAL, VTK and OpenMesh are compared with the Metro geometric error measuring tool. By this way we try to supply a guidance for developers for publicly available mesh libraries in order to implement polygonal mesh simplification

    Simple quad domains for field aligned mesh parametrization

    Get PDF
    We present a method for the global parametrization of meshes that preserves alignment to a cross field in input while obtaining a parametric domain made of few coarse axis-aligned rectangular patches, which form an abstract base complex without T-junctions. The method is based on the topological simplification of the cross field in input, followed by global smoothing

    Interactive Geometry Remeshing

    Get PDF
    We present a novel technique, both flexible and efficient, for interactive remeshing of irregular geometry. First, the original (arbitrary genus) mesh is substituted by a series of 2D maps in parameter space. Using these maps, our algorithm is then able to take advantage of established signal processing and halftoning tools that offer real-time interaction and intricate control. The user can easily combine these maps to create a control map – a map which controls the sampling density over the surface patch. This map is then sampled at interactive rates allowing the user to easily design a tailored resampling. Once this sampling is complete, a Delaunay triangulation and fast optimization are performed to perfect the final mesh. As a result, our remeshing technique is extremely versatile and general, being able to produce arbitrarily complex meshes with a variety of properties including: uniformity, regularity, semiregularity, curvature sensitive resampling, and feature preservation. We provide a high level of control over the sampling distribution allowing the user to interactively custom design the mesh based on their requirements thereby increasing their productivity in creating a wide variety of meshes

    Human perception-oriented segmentation for triangle meshes

    Get PDF
    A segmentação de malhas é um tópico importante de investigação em computação gráfica, em particular em modelação geométrica. Isto deve-se ao facto de as técnicas de segmentaçãodemalhasteremváriasaplicações,nomeadamentenaproduçãodefilmes, animaçãoporcomputador, realidadevirtual, compressãodemalhas, assimcomoemjogosdigitais. Emconcreto, asmalhastriangularessãoamplamenteusadasemaplicações interativas, visto que sua segmentação em partes significativas (também designada por segmentação significativa, segmentação perceptiva ou segmentação perceptualmente significativa ) é muitas vezes vista como uma forma de acelerar a interação com o utilizador ou a deteção de colisões entre esses objetos 3D definidos por uma malha, bem como animar uma ou mais partes significativas (por exemplo, a cabeça de uma personagem) de um dado objeto, independentemente das restantes partes. Acontece que não se conhece nenhuma técnica capaz de segmentar correctamente malhas arbitrárias −ainda que restritas aos domínios de formas livres e não-livres− em partes significativas. Algumas técnicas são mais adequadas para objetos de forma não-livre (por exemplo, peças mecânicas definidas geometricamente por quádricas), enquanto outras são mais talhadas para o domínio dos objectos de forma livre. Só na literatura recente surgem umas poucas técnicas que se aplicam a todo o universo de objetos de forma livre e não-livre. Pior ainda é o facto de que a maioria das técnicas de segmentação não serem totalmente automáticas, no sentido de que quase todas elas exigem algum tipo de pré-requisitos e assistência do utilizador. Resumindo, estes três desafios relacionados com a proximidade perceptual, generalidade e automação estão no cerne do trabalho descrito nesta tese. Para enfrentar estes desafios, esta tese introduz o primeiro algoritmo de segmentação baseada nos contornos ou fronteiras dos segmentos, cuja técnica se inspira nas técnicas de segmentação baseada em arestas, tão comuns em análise e processamento de imagem,porcontraposiçãoàstécnicasesegmentaçãobaseadaemregiões. Aideiaprincipal é a de encontrar em primeiro lugar a fronteira de cada região para, em seguida, identificar e agrupar todos os seus triângulos internos. As regiões da malha encontradas correspondem a saliências e reentrâncias, que não precisam de ser estritamente convexas, nem estritamente côncavas, respectivamente. Estas regiões, designadas regiões relaxadamenteconvexas(ousaliências)eregiõesrelaxadamentecôncavas(oureentrâncias), produzem segmentações que são menos sensíveis ao ruído e, ao mesmo tempo, são mais intuitivas do ponto de vista da perceção humana; por isso, é designada por segmentação orientada à perceção humana (ou, human perception- oriented (HPO), do inglês). Além disso, e ao contrário do atual estado-da-arte da segmentação de malhas, a existência destas regiões relaxadas torna o algoritmo capaz de segmentar de maneira bastante plausível tanto objectos de forma não-livre como objectos de forma livre. Nesta tese, enfrentou-se também um quarto desafio, que está relacionado com a fusão de segmentação e multi-resolução de malhas. Em boa verdade, já existe na literatura uma variedade grande de técnicas de segmentação, bem como um número significativo de técnicas de multi-resolução, para malhas triangulares. No entanto, não é assim tão comum encontrar estruturas de dados e algoritmos que façam a fusão ou a simbiose destes dois conceitos, multi-resolução e segmentação, num único esquema multi-resolução que sirva os propósitos das aplicações que lidam com malhas simples e segmentadas, sendo que neste contexto se entende que uma malha simples é uma malha com um único segmento. Sendo assim, nesta tese descreve-se um novo esquema (entenda-seestruturasdedadosealgoritmos)demulti-resoluçãoesegmentação,designado por extended Ghost Cell (xGC). Este esquema preserva a forma das malhas, tanto em termos globais como locais, ou seja, os segmentos da malha e as suas fronteiras, bem como os seus vincos e ápices são preservados, não importa o nível de resolução que usamos durante a/o simplificação/refinamento da malha. Além disso, ao contrário de outros esquemas de segmentação, tornou-se possível ter segmentos adjacentes com dois ou mais níveis de resolução de diferença. Isto é particularmente útil em animação por computador, compressão e transmissão de malhas, operações de modelação geométrica, visualização científica e computação gráfica. Em suma, esta tese apresenta um esquema genérico, automático, e orientado à percepção humana, que torna possível a simbiose dos conceitos de segmentação e multiresolução de malhas trianguladas que sejam representativas de objectos 3D.The mesh segmentation is an important topic in computer graphics, in particular in geometric computing. This is so because mesh segmentation techniques find many applications in movies, computer animation, virtual reality, mesh compression, and games. Infact, trianglemeshesarewidelyusedininteractiveapplications, sothattheir segmentation in meaningful parts (i.e., human-perceptually segmentation, perceptive segmentationormeaningfulsegmentation)isoftenseenasawayofspeedinguptheuser interaction, detecting collisions between these mesh-covered objects in a 3D scene, as well as animating one or more meaningful parts (e.g., the head of a humanoid) independently of the other parts of a given object. It happens that there is no known technique capable of correctly segmenting any mesh into meaningful parts. Some techniques are more adequate for non-freeform objects (e.g., quadricmechanicalparts), whileothersperformbetterinthedomainoffreeform objects. Only recently, some techniques have been developed for the entire universe of objects and shapes. Even worse it is the fact that most segmentation techniques are not entirely automated in the sense that almost all techniques require some sort of pre-requisites and user assistance. Summing up, these three challenges related to perceptual proximity, generality and automation are at the core of the work described in this thesis. In order to face these challenges, we have developed the first contour-based mesh segmentation algorithm that we may find in the literature, which is inspired in the edgebased segmentation techniques used in image analysis, as opposite to region-based segmentation techniques. Its leading idea is to firstly find the contour of each region, and then to identify and collect all of its inner triangles. The encountered mesh regions correspond to ups and downs, which do not need to be strictly convex nor strictly concave, respectively. These regions, called relaxedly convex regions (or saliences) and relaxedly concave regions (or recesses), produce segmentations that are less-sensitive to noise and, at the same time, are more intuitive from the human point of view; hence it is called human perception- oriented (HPO) segmentation. Besides, and unlike the current state-of-the-art in mesh segmentation, the existence of these relaxed regions makes the algorithm suited to both non-freeform and freeform objects. In this thesis, we have also tackled a fourth challenge, which is related with the fusion of mesh segmentation and multi-resolution. Truly speaking, a plethora of segmentation techniques, as well as a number of multiresolution techniques, for triangle meshes already exist in the literature. However, it is not so common to find algorithms and data structures that fuse these two concepts, multiresolution and segmentation, into a symbiotic multi-resolution scheme for both plain and segmented meshes, in which a plainmeshisunderstoodasameshwithasinglesegment. So, weintroducesuchanovel multiresolution segmentation scheme, called extended Ghost Cell (xGC) scheme. This scheme preserves the shape of the meshes in both global and local terms, i.e., mesh segments and their boundaries, as well as creases and apices are preserved, no matter the level of resolution we use for simplification/refinement of the mesh. Moreover, unlike other segmentation schemes, it was made possible to have adjacent segments with two or more resolution levels of difference. This is particularly useful in computer animation, mesh compression and transmission, geometric computing, scientific visualization, and computer graphics. In short, this thesis presents a fully automatic, general, and human perception-oriented scheme that symbiotically integrates the concepts of mesh segmentation and multiresolution

    High-Quality Simplification and Repair of Polygonal Models

    Get PDF
    Because of the rapid evolution of 3D acquisition and modelling methods, highly complex and detailed polygonal models with constantly increasing polygon count are used as three-dimensional geometric representations of objects in computer graphics and engineering applications. The fact that this particular representation is arguably the most widespread one is due to its simplicity, flexibility and rendering support by 3D graphics hardware. Polygonal models are used for rendering of objects in a broad range of disciplines like medical imaging, scientific visualization, computer aided design, film industry, etc. The handling of huge scenes composed of these high-resolution models rapidly approaches the computational capabilities of any graphics accelerator. In order to be able to cope with the complexity and to build level-of-detail representations, concentrated efforts were dedicated in the recent years to the development of new mesh simplification methods that produce high-quality approximations of complex models by reducing the number of polygons used in the surface while keeping the overall shape, volume and boundaries preserved as much as possible. Many well-established methods and applications require "well-behaved" models as input. Degenerate or incorectly oriented faces, T-joints, cracks and holes are just a few of the possible degenaracies that are often disallowed by various algorithms. Unfortunately, it is all too common to find polygonal models that contain, due to incorrect modelling or acquisition, such artefacts. Applications that may require "clean" models include finite element analysis, surface smoothing, model simplification, stereo lithography. Mesh repair is the task of removing artefacts from a polygonal model in order to produce an output model that is suitable for further processing by methods and applications that have certain quality requirements on their input. This thesis introduces a set of new algorithms that address several particular aspects of mesh repair and mesh simplification. One of the two mesh repair methods is dealing with the inconsistency of normal orientation, while another one, removes the inconsistency of vertex connectivity. Of the three mesh simplification approaches presented here, the first one attempts to simplify polygonal models with the highest possible quality, the second, applies the developed technique to out-of-core simplification, and the third, prevents self-intersections of the model surface that can occur during mesh simplification

    Geometric modeling and optimization over regular domains for graphics and visual computing

    Get PDF
    The effective construction of parametric representation of complicated geometric objects can facilitate many design, analysis, and simulation tasks in Computer-Aided Design (CAD), Computer-Aided Manufacturing (CAM), and Computer-Aided Engineering (CAE). Given a 3D shape, the procedure of finding such a parametric representation upon a canonical domain is called geometric parameterization. Regular geometric regions, such as polycubes and spheres, are desirable domains for parameterization. Parametric representations defined upon regular geometric domains have many desirable mathematical properties and can facilitate or simplify various surface/solid modeling and processing computation. This dissertation studies the construction of parameterization on regular geometric domains and explores their applications in shape modeling and computer-aided design. Specifically, we studies (1) the surface parameterization on the spherical domain for closed genus-zero surfaces; (2) the surface parameterization on the polycube domain for general closed surfaces; and (3) the volumetric parameterization for 3D-manifolds embedded in 3D Euclidean space. We propose novel computational models to solve these geometric problems. Our computational models reduce to nonlinear optimizations with various geometric constraints. Hence, we also need to explore effective optimization algorithms. The main contributions of this dissertation are three-folded. (1) We developed an effective progressive spherical parameterization algorithm, with an efficient nonlinear optimization scheme subject to the spherical constraint. Compared with the state-of-the-art spherical mapping algorithms, our algorithm demonstrates the advantages of great efficiency, lower distortion, and guaranteed bijectiveness, and we show its applications in spherical harmonic decomposition and shape analysis. (2) We propose a first topology-preserving polycube domain optimization algorithm that simultaneously optimizes polycube domain together with the parameterization to balance the mapping distortion and domain simplicity. We develop effective nonlinear geometric optimization algorithms dealing with variables with and without derivatives. This polycube parameterization algorithm can benefit the regular quadrilateral mesh generation and cross-surface parameterization. (3) We develop a novel quaternion-based optimization framework for 3D frame field construction and volumetric parameterization computation. We demonstrate our constructed 3D frame field has better smoothness, compared with state-of-the-art algorithms, and is effective in guiding low-distortion volumetric parameterization and high-quality hexahedral mesh generation
    • …
    corecore