454,287 research outputs found

    Fast LIDAR-based Road Detection Using Fully Convolutional Neural Networks

    Full text link
    In this work, a deep learning approach has been developed to carry out road detection using only LIDAR data. Starting from an unstructured point cloud, top-view images encoding several basic statistics such as mean elevation and density are generated. By considering a top-view representation, road detection is reduced to a single-scale problem that can be addressed with a simple and fast fully convolutional neural network (FCN). The FCN is specifically designed for the task of pixel-wise semantic segmentation by combining a large receptive field with high-resolution feature maps. The proposed system achieved excellent performance and it is among the top-performing algorithms on the KITTI road benchmark. Its fast inference makes it particularly suitable for real-time applications

    Open-Vocabulary Affordance Detection using Knowledge Distillation and Text-Point Correlation

    Full text link
    Affordance detection presents intricate challenges and has a wide range of robotic applications. Previous works have faced limitations such as the complexities of 3D object shapes, the wide range of potential affordances on real-world objects, and the lack of open-vocabulary support for affordance understanding. In this paper, we introduce a new open-vocabulary affordance detection method in 3D point clouds, leveraging knowledge distillation and text-point correlation. Our approach employs pre-trained 3D models through knowledge distillation to enhance feature extraction and semantic understanding in 3D point clouds. We further introduce a new text-point correlation method to learn the semantic links between point cloud features and open-vocabulary labels. The intensive experiments show that our approach outperforms previous works and adapts to new affordance labels and unseen objects. Notably, our method achieves the improvement of 7.96% mIOU score compared to the baselines. Furthermore, it offers real-time inference which is well-suitable for robotic manipulation applications.Comment: 8 page

    Autonomous Vehicles and Machines Conference, at IS&T Electronic Imaging

    Get PDF
    The performance of autonomous agents in both commercial and consumer applications increases along with their situational awareness. Tasks such as obstacle avoidance, agent to agent interaction, and path planning are directly dependent upon their ability to convert sensor readings into scene understanding. Central to this is the ability to detect and recognize objects. Many object detection methodologies operate on a single modality such as vision or LiDAR. Camera-based object detection models benefit from an abundance of feature-rich information for classifying different types of objects. LiDAR-based object detection models use sparse point clouds, where each point contains accurate 3D position of object surfaces. Camera-based methods lack accurate object to lens distance measurements, while LiDAR-based methods lack dense feature-rich details. By utilizing information from both camera and LiDAR sensors, advanced object detection and identification is possible. In this work, we introduce a deep learning framework for fusing these modalities and produce a robust real-time 3D bounding box object detection network. We demonstrate qualitative and quantitative analysis of the proposed fusion model on the popular KITTI dataset

    Automatic vehicle detection and tracking in aerial video

    Get PDF
    This thesis is concerned with the challenging tasks of automatic and real-time vehicle detection and tracking from aerial video. The aim of this thesis is to build an automatic system that can accurately localise any vehicles that appear in aerial video frames and track the target vehicles with trackers. Vehicle detection and tracking have many applications and this has been an active area of research during recent years; however, it is still a challenge to deal with certain realistic environments. This thesis develops vehicle detection and tracking algorithms which enhance the robustness of detection and tracking beyond the existing approaches. The basis of the vehicle detection system proposed in this thesis has different object categorisation approaches, with colour and texture features in both point and area template forms. The thesis also proposes a novel Self-Learning Tracking and Detection approach, which is an extension to the existing Tracking Learning Detection (TLD) algorithm. There are a number of challenges in vehicle detection and tracking. The most difficult challenge of detection is distinguishing and clustering the target vehicle from the background objects and noises. Under certain conditions, the images captured from Unmanned Aerial Vehicles (UAVs) are also blurred; for example, turbulence may make the vehicle shake during flight. This thesis tackles these challenges by applying integrated multiple feature descriptors for real-time processing. In this thesis, three vehicle detection approaches are proposed: the HSV-GLCM feature approach, the ISM-SIFT feature approach and the FAST-HoG approach. The general vehicle detection approaches used have highly flexible implicit shape representations. They are based on training samples in both positive and negative sets and use updated classifiers to distinguish the targets. It has been found that the detection results attained by using HSV-GLCM texture features can be affected by blurring problems; the proposed detection algorithms can further segment the edges of the vehicles from the background. Using the point descriptor feature can solve the blurring problem, however, the large amount of information contained in point descriptors can lead to processing times that are too long for real-time applications. So the FAST-HoG approach combining the point feature and the shape feature is proposed. This new approach is able to speed up the process that attains the real-time performance. Finally, a detection approach using HoG with the FAST feature is also proposed. The HoG approach is widely used in object recognition, as it has a strong ability to represent the shape vector of the object. However, the original HoG feature is sensitive to the orientation of the target; this method improves the algorithm by inserting the direction vectors of the targets. For the tracking process, a novel tracking approach was proposed, an extension of the TLD algorithm, in order to track multiple targets. The extended approach upgrades the original system, which can only track a single target, which must be selected before the detection and tracking process. The greatest challenge to vehicle tracking is long-term tracking. The target object can change its appearance during the process and illumination and scale changes can also occur. The original TLD feature assumed that tracking can make errors during the tracking process, and the accumulation of these errors could cause tracking failure, so the original TLD proposed using a learning approach in between the tracking and the detection by adding a pair of inspectors (positive and negative) to constantly estimate errors. This thesis extends the TLD approach with a new detection method in order to achieve multiple-target tracking. A Forward and Backward Tracking approach has been proposed to eliminate tracking errors and other problems such as occlusion. The main purpose of the proposed tracking system is to learn the features of the targets during tracking and re-train the detection classifier for further processes. This thesis puts particular emphasis on vehicle detection and tracking in different extreme scenarios such as crowed highway vehicle detection, blurred images and changes in the appearance of the targets. Compared with currently existing detection and tracking approaches, the proposed approaches demonstrate a robust increase in accuracy in each scenario

    Efficient Human Facial Pose Estimation

    Get PDF
    Pose estimation has become an increasingly important area in computer vision and more specifically in human facial recognition and activity recognition for surveillance applications. Pose estimation is a process by which the rotation, pitch, or yaw of a human head is determined. Numerous methods already exist which can determine the angular change of a face, however, these methods vary in accuracy and their computational requirements tend to be too high for real-time applications. The objective of this thesis is to develop a method for pose estimation, which is computationally efficient, while still maintaining a reasonable degree of accuracy. In this thesis, a feature-based method is presented to determine the yaw angle of a human facial pose using a combination of artificial neural networks and template matching. The artificial neural networks are used for the feature detection portion of the algorithm along with skin detection and other image enhancement algorithms. The first head model, referred to as the Frontal Position Model, determines the pose of the face using two eyes and the mouth. The second model, referred to as the Side Position Model, is used when only one eye can be viewed and determines pose based on a single eye, the nose tip, and the mouth. The two models are presented to demonstrate the position change of facial features due to pose and to provide the means to determine the pose as these features change from the frontal position. The effectiveness of this pose estimation method is examined by looking at both the manual and automatic feature detection methods. Analysis is further performed on how errors in feature detection affect the resulting pose determination. The method resulted in the detection of facial pose from 30 to -30 degrees with an average error of 4.28 degrees for the Frontal Position Model and 5.79 degrees for the Side Position Model with correct feature detection. The Intel(R) Streaming SIMD Extensions (SSE) technology was employed to enhance the performance of floating point operations. The neural networks used in the feature detection process require a large amount of floating point calculations, due to the computation of the image data with weights and biases. With SSE optimization the algorithm becomes suitable for processing images in a real-time environment. The method is capable of determining features and estimating the pose at a rate of seven frames per second on a 1.8 GHz Pentium 4 computer

    The brightness clustering transform and locally contrasting keypoints

    No full text
    In recent years a new wave of feature descriptors has been presented to the computer vision community, ORB, BRISK and FREAK amongst others. These new descriptors allow reduced time and memory consumption on the processing and storage stages of tasks such as image matching or visual odometry, enabling real time applications. The problem is now the lack of fast interest point detectors with good repeatability to use with these new descriptors. We present a new blob- detector which can be implemented in real time and is faster than most of the currently used feature-detectors. The detection is achieved with an innovative non-deterministic low-level operator called the Brightness Clustering Transform (BCT). The BCT can be thought as a coarse-to- fine search through scale spaces for the true derivative of the image; it also mimics trans-saccadic perception of human vision. We call the new algorithm Locally Contrasting Keypoints detector or LOCKY. Showing good repeatability and robustness to image transformations included in the Oxford dataset, LOCKY is amongst the fastest affine-covariant feature detectors

    SlimYOLOv3: Narrower, Faster and Better for Real-Time UAV Applications

    Full text link
    Drones or general Unmanned Aerial Vehicles (UAVs), endowed with computer vision function by on-board cameras and embedded systems, have become popular in a wide range of applications. However, real-time scene parsing through object detection running on a UAV platform is very challenging, due to limited memory and computing power of embedded devices. To deal with these challenges, in this paper we propose to learn efficient deep object detectors through channel pruning of convolutional layers. To this end, we enforce channel-level sparsity of convolutional layers by imposing L1 regularization on channel scaling factors and prune less informative feature channels to obtain "slim" object detectors. Based on such approach, we present SlimYOLOv3 with fewer trainable parameters and floating point operations (FLOPs) in comparison of original YOLOv3 (Joseph Redmon et al., 2018) as a promising solution for real-time object detection on UAVs. We evaluate SlimYOLOv3 on VisDrone2018-Det benchmark dataset; compelling results are achieved by SlimYOLOv3 in comparison of unpruned counterpart, including ~90.8% decrease of FLOPs, ~92.0% decline of parameter size, running ~2 times faster and comparable detection accuracy as YOLOv3. Experimental results with different pruning ratios consistently verify that proposed SlimYOLOv3 with narrower structure are more efficient, faster and better than YOLOv3, and thus are more suitable for real-time object detection on UAVs. Our codes are made publicly available at https://github.com/PengyiZhang/SlimYOLOv3
    • …
    corecore