149 research outputs found

    Application of Geographic Information Systems

    Get PDF
    The importance of Geographic Information Systems (GIS) can hardly be overemphasized in today’s academic and professional arena. More professionals and academics have been using GIS than ever – urban & regional planners, civil engineers, geographers, spatial economists, sociologists, environmental scientists, criminal justice professionals, political scientists, and alike. As such, it is extremely important to understand the theories and applications of GIS in our teaching, professional work, and research. “The Application of Geographic Information Systems” presents research findings that explain GIS’s applications in different subfields of social sciences. With several case studies conducted in different parts of the world, the book blends together the theories of GIS and their practical implementations in different conditions. It deals with GIS’s application in the broad spectrum of geospatial analysis and modeling, water resources analysis, land use analysis, infrastructure network analysis like transportation and water distribution network, and such. The book is expected to be a useful source of knowledge to the users of GIS who envision its applications in their teaching and research. This easy-to-understand book is surely not the end in itself but a little contribution to toward our understanding of the rich and wonderful subject of GIS

    Projecting land use changes using parcel-level data : model development and application to Hunterdon County, New Jersey

    Get PDF
    This dissertation is to develop a parcel-based spatial land use change prediction model by coupling various machine learning and interpretation algorithms such as cellular automata (CA) and decision tree (DT). CA is a collection of cells that evolves through a number of discrete time steps according to a set of transition rules based on the state of each cell and the characteristics of its neighboring cells. DT is a data mining and machine learning tool that extracts the patterns of decision process from observed cell behaviors and their affecting factors. In this dissertation, CA is used to predict the future land use status of cadastral parcels based on a set of transition rules derived from a set of identified land use change driving factors using DT. Although CA and DT have been applied separately in various land use change models in the literature, no studies attempted to integrate them. This DT-based CA model developed in this dissertation represents the first kind of such integration in land use change modeling. The coupled model would be able to handle a large set of driving factors and also avoid subjective bias when deriving the transition rules. The coupled model uses the cadastral parcel as a unit of analysis, which has practical policy implications because the responses of land use changes to various policy usually take place at the parcel level. Since parcel varies by their sizes and shapes, its use as a unit of analysis does make it difficult to apply CA, which initially designed to handle regular grid cells. This dissertation improves the treatment of the irregular cell in CA-based land use change models in literature by defining a cell\u27s neighborhood as a fixed distance buffer along the parcel boundary. The DT-based CA model was developed and validated in Hunterdon County, New Jersey. The data on historical land uses and various land use change driving factors for Hunterdon County were collected and processed using a Geographic Information System (GIS). Specifically, the county land uses in 1986, I995 and 2002 were overlaid with a parcel map to create parcel-based land use maps. The single land use in each parcel is based on a classification scheme developed thorough literature review and empirical testing in the study area. The possible land use status considered for each parcel is agriculture, barren land, forest, urban, water or wetlands following the land use/land cover classification by the New Jersey Department of Environment Protection. The identified driving factors for the future status of the parcel includes the present land use type, the number of soil restrictions to urban development, and the size of the parcel, the amount of wetlands within the parcel, the distribution of land uses in the neighborhood of the parcel, the distances to the nearest streams, urban centers and major roads. A set of transition rules illustrating the land use change processes during the period 1986-1995 were developed using a TD software J48 Classifier. The derived transition rules were applied to the 1995 land use data in a CA model Agent Analyst/RePast (Recursive Porous Agent Simulation Toolkit) to predict the spatial land use pattern in 2004, which were then validated by the actual land use map in 2002. The DT-based CA model had an overall accuracy of 84.46 percent in terms of the number of parcels and of 80.92 percent in terms of the total acreage in predicting land use changes. The model shows much higher capacity in predicting the quantitative changes than the locational changes in land use. The validated model was applied to simulate the 2011 land use patterns in Hunterdon County based on its actual land uses in 2002 under both business as usual and policy scenarios. The simulation results shows that successfully implementing current land use policies such as down zoning, open space and farmland preservation would prevent the total of 7,053 acres (741 acres of wetlands, 3,034 acres of agricultural lands, 250 acres of barren land, and 3,028 acres of forest) from future urban development in Hunterdon County during the period 2002-2011. The neighborhood of a parcel was defined by a 475-foot buffer along the parcel boundary in the study. The results of sensitivity analyses using two additional neighborhoods (237- and 712-foot buffers) indicate the insignificant impacts of the neighborhood size on the model outputs in this application

    Solving key design issues for massively multiplayer online games on peer-to-peer architectures

    Get PDF
    Massively Multiplayer Online Games (MMOGs) are increasing in both popularity and scale on the Internet and are predominantly implemented by Client/Server architectures. While such a classical approach to distributed system design offers many benefits, it suffers from significant technical and commercial drawbacks, primarily reliability and scalability costs. This realisation has sparked recent research interest in adapting MMOGs to Peer-to-Peer (P2P) architectures. This thesis identifies six key design issues to be addressed by P2P MMOGs, namely interest management, event dissemination, task sharing, state persistency, cheating mitigation, and incentive mechanisms. Design alternatives for each issue are systematically compared, and their interrelationships discussed. How well representative P2P MMOG architectures fulfil the design criteria is also evaluated. It is argued that although P2P MMOG architectures are developing rapidly, their support for task sharing and incentive mechanisms still need to be improved. The design of a novel framework for P2P MMOGs, Mediator, is presented. It employs a self-organising super-peer network over a P2P overlay infrastructure, and addresses the six design issues in an integrated system. The Mediator framework is extensible, as it supports flexible policy plug-ins and can accommodate the introduction of new superpeer roles. Key components of this framework have been implemented and evaluated with a simulated P2P MMOG. As the Mediator framework relies on super-peers for computational and administrative tasks, membership management is crucial, e.g. to allow the system to recover from super-peer failures. A new technology for this, namely Membership-Aware Multicast with Bushiness Optimisation (MAMBO), has been designed, implemented and evaluated. It reuses the communication structure of a tree-based application-level multicast to track group membership efficiently. Evaluation of a demonstration application shows i that MAMBO is able to quickly detect and handle peers joining and leaving. Compared to a conventional supervision architecture, MAMBO is more scalable, and yet incurs less communication overheads. Besides MMOGs, MAMBO is suitable for other P2P applications, such as collaborative computing and multimedia streaming. This thesis also presents the design, implementation and evaluation of a novel task mapping infrastructure for heterogeneous P2P environments, Deadline-Driven Auctions (DDA). DDA is primarily designed to support NPC host allocation in P2P MMOGs, and specifically in the Mediator framework. However, it can also support the sharing of computational and interactive tasks with various deadlines in general P2P applications. Experimental and analytical results demonstrate that DDA efficiently allocates computing resources for large numbers of real-time NPC tasks in a simulated P2P MMOG with approximately 1000 players. Furthermore, DDA supports gaming interactivity by keeping the communication latency among NPC hosts and ordinary players low. It also supports flexible matchmaking policies, and can motivate application participants to contribute resources to the system

    Re-engineering jake2 to work on a grid using the GridGain Middleware

    Get PDF
    With the advent of Massively Multiplayer Online Games (MMOGs), engineers and designers of games came across with many questions that needed to be answered such as, for example, "how to allow a large amount of clients to play simultaneously on the same server?", "how to guarantee a good quality of service (QoS) to a great number of clients?", "how many resources will be necessary?", "how to optimize these resources to the maximum?". A possible answer to these questions relies on the usage of grid computing. Taking into account the parallel and distributed nature of grid computing, we can say that grid computing allows for more scalability in terms of a growing number of players, guarantees shorter communication time between clients and servers, and allows for a better resource management and usage (e.g., memory, CPU, core balancing usage, etc.) than the traditional serial computing model. However, the main focus of this thesis is not about grid computing. Instead, this thesis describes the re-engineering process of an existing multiplayer computer game, called Jake2, by transforming it into a MMOG, which is then put to run on a grid

    Context based detection of urban land use zones

    Get PDF
    This dissertation proposes an automated land-use zoning system based on the context of an urban scene. Automated zoning is an important step toward improving object extraction in an urban scene

    Configraphics:

    Get PDF
    This dissertation reports a PhD research on mathematical-computational models, methods, and techniques for analysis, synthesis, and evaluation of spatial configurations in architecture and urban design. Spatial configuration is a technical term that refers to the particular way in which a set of spaces are connected to one another as a network. Spatial configuration affects safety, security, and efficiency of functioning of complex buildings by facilitating certain patterns of movement and/or impeding other patterns. In cities and suburban built environments, spatial configuration affects accessibilities and influences travel behavioural patterns, e.g. choosing walking and cycling for short trips instead of travelling by cars. As such, spatial configuration effectively influences the social, economic, and environmental functioning of cities and complex buildings, by conducting human movement patterns. In this research, graph theory is used to mathematically model spatial configurations in order to provide intuitive ways of studying and designing spatial arrangements for architects and urban designers. The methods and tools presented in this dissertation are applicable in: arranging spatial layouts based on configuration graphs, e.g. by using bubble diagrams to ensure certain spatial requirements and qualities in complex buildings; and analysing the potential effects of decisions on the likely spatial performance of buildings and on mobility patterns in built environments for systematic comparison of designs or plans, e.g. as to their aptitude for pedestrians and cyclists. The dissertation reports two parallel tracks of work on architectural and urban configurations. The core concept of the architectural configuration track is the ‘bubble diagram’ and the core concept of the urban configuration track is the ‘easiest paths’ for walking and cycling. Walking and cycling have been chosen as the foci of this theme as they involve active physical, cognitive, and social encounter of people with built environments, all of which are influenced by spatial configuration. The methodologies presented in this dissertation have been implemented in design toolkits and made publicly available as freeware applications

    A Homogeneity-based Zone Delineation Model for Land Use and Transportation Interaction Analysis: Investigating the Case of Light Rail Transit (LRT) Development in Kitchener – Waterloo

    Get PDF
    In an ever-increasingly urbanized world, planning policies bring direct and indirect societal and environmental impacts affecting quality of life for millions of people. Policy decisions are often complex, involving trade-offs between competing interests and high degrees of uncertainties. Quantitative methods have been used to understand the complexity of urban dynamics, to evaluate the alternative future scenarios and ultimately to help make more informed decisions. Despite the advantages these methods offer, they have been criticized for being ad-hoc, complicated and sensitive to the arbitrary choice of the indicators and the spatial scales of analysis. In particular, transportation analysis and modeling often rely on pre-set structures of Traffic (or Transportation) Analysis Zones (TAZs) to conceptualize geographic space as it relates to urban activities and transportation flows. Theory suggests that appropriately created spatial structures for transportation analysis should represent areas with homogeneous characteristics in terms of land uses and activities. Reviewing literature indicates that conventional TAZs do not necessarily provide satisfactory levels of homogeneity due primarily to the insufficiency of density as the primary measure to create these zones and the arbitrary use of roadways in breaking the zones boundaries. As we move towards an era in which new mobility modes emerge and modern data sources open up great opportunities, it is necessary to rethink the way we conceptualize space within land use and transportation system interactions (LUTI) studies. This research is motivated by the idea that land use diversity is equally important as densities (and other attributes) to define the spatial unit of analysis. The research aims to advance understanding of the impacts caused by the choice of analysis zones on the travel behavior and land use development analysis outcomes. This dissertation develops an enhanced measure of heterogeneity (i.e., land use diversity) and applies this measure to create a dynamic zonal structure through an iterative spatial aggregation method. This algorithm combines the input disaggregate zones that have similar diversity levels but also assembled from similar disaggregate land uses that make up their diversity. The developed spatial models are examined and validated using a set of disaggregate land use, travel behavior and the building permits data from Waterloo Region in southern Ontario, Canada. This research examines the effects of land use heterogeneity and access to rapid transit on an ongoing urban dynamic in this fast-growing mid-size metropolitan region. The first set of analyses explores the suitability of the proposed zonal structure – called Dynamic Activity Cluster Zones (DACZs) – compared to a commonly used pre-defined TAZ system and a graph-based spatial clustering model. The results indicate the advantages of the DACZ model in terms of concurrently creating more homogeneous zones with balanced size distribution. A sensitivity analysis is then performed to evaluate the robustness of the DACZ model in producing reliable zonal structures as a function of three parameters including aggregation heterogeneity threshold, levels of adjacency, and the original (input) spatial disaggregation. The results show that the model is effective in generating zones for which the size is defined as a function of homogeneity, as a result, these zones will generate more predictable outcomes in travel behavior modeling and analysis. The second work investigates the regional daily travel behavior data aggregated and compared for both the DACZ and a conventional TAZ structure used in the regional planning called PLUM (an acronym for Population and Land Use Model). The comparisons reveal that the impacts of built environment homogeneity on travel behavior are more pronounced within DACZs, where the dynamic zones effectively capture variations of the active transportation and public transit mode shares. This analysis also uncovers a varying pattern of mode share and the average travel times across the built environment categories identified based on the population density and land use diversity levels; by increasing the levels of population density and land use diversity more trips are shown to be made by non-auto modes. This outcome supports the LUTI theories which contend that areas with diverse land uses and high population density are more conducive to active transportation and public transit trips. The third investigation seeks to understand how the introduction of proposed and actual rapid transit investments are related to land use development trends. In a temporal analysis, the historical building permit data from 2000 to 2019 are analyzed focusing on two periods before and after the LRT project funding announcement (2010-2011). The adjusted permits construction values are calculated and compared across multiple scales including the study area, relative to the Regions’ Central Transit Corridor (CTC) and within different heterogeneous built environment categories. The results identify areas that have disproportionately attracted more and higher valued developments, especially after announcement of the LRT project funding. The outcomes also confirm the role of higher levels of land use diversity and access to rapid transit on attracting greater scale of land use developments, while the density is found to have minimal association with this trend. In summary, this study advances the research on land use and transportation system interactions by (i) articulating a novel spatial unit of analysis through developing and applying an enhanced homogeneity index and a spatial aggregation model, (ii) examining the associations between travel behavior patterns and heterogeneous built environment characteristics, (iii) providing insights on the development trends across Waterloo Region at multiple spatial-temporal scales that can be used in ongoing regional policy and planning evaluations, (iv) more generally facilitating the land use and transportation integration in planning and policy development through assessment and dissemination of a set of rigorous spatial modeling methods

    Paraglide: Interactive Parameter Space Partitioning for Computer Simulations

    Full text link
    In this paper we introduce paraglide, a visualization system designed for interactive exploration of parameter spaces of multi-variate simulation models. To get the right parameter configuration, model developers frequently have to go back and forth between setting parameters and qualitatively judging the outcomes of their model. During this process, they build up a grounded understanding of the parameter effects in order to pick the right setting. Current state-of-the-art tools and practices, however, fail to provide a systematic way of exploring these parameter spaces, making informed decisions about parameter settings a tedious and workload-intensive task. Paraglide endeavors to overcome this shortcoming by assisting the sampling of the parameter space and the discovery of qualitatively different model outcomes. This results in a decomposition of the model parameter space into regions of distinct behaviour. We developed paraglide in close collaboration with experts from three different domains, who all were involved in developing new models for their domain. We first analyzed current practices of six domain experts and derived a set of design requirements, then engaged in a longitudinal user-centered design process, and finally conducted three in-depth case studies underlining the usefulness of our approach
    • 

    corecore