40,041 research outputs found

    f-VAEGAN-D2: A Feature Generating Framework for Any-Shot Learning

    Full text link
    When labeled training data is scarce, a promising data augmentation approach is to generate visual features of unknown classes using their attributes. To learn the class conditional distribution of CNN features, these models rely on pairs of image features and class attributes. Hence, they can not make use of the abundance of unlabeled data samples. In this paper, we tackle any-shot learning problems i.e. zero-shot and few-shot, in a unified feature generating framework that operates in both inductive and transductive learning settings. We develop a conditional generative model that combines the strength of VAE and GANs and in addition, via an unconditional discriminator, learns the marginal feature distribution of unlabeled images. We empirically show that our model learns highly discriminative CNN features for five datasets, i.e. CUB, SUN, AWA and ImageNet, and establish a new state-of-the-art in any-shot learning, i.e. inductive and transductive (generalized) zero- and few-shot learning settings. We also demonstrate that our learned features are interpretable: we visualize them by inverting them back to the pixel space and we explain them by generating textual arguments of why they are associated with a certain label.Comment: Accepted at CVPR 201

    Class Anchor Margin Loss for Content-Based Image Retrieval

    Full text link
    The performance of neural networks in content-based image retrieval (CBIR) is highly influenced by the chosen loss (objective) function. The majority of objective functions for neural models can be divided into metric learning and statistical learning. Metric learning approaches require a pair mining strategy that often lacks efficiency, while statistical learning approaches are not generating highly compact features due to their indirect feature optimization. To this end, we propose a novel repeller-attractor loss that falls in the metric learning paradigm, yet directly optimizes for the L2 metric without the need of generating pairs. Our loss is formed of three components. One leading objective ensures that the learned features are attracted to each designated learnable class anchor. The second loss component regulates the anchors and forces them to be separable by a margin, while the third objective ensures that the anchors do not collapse to zero. Furthermore, we develop a more efficient two-stage retrieval system by harnessing the learned class anchors during the first stage of the retrieval process, eliminating the need of comparing the query with every image in the database. We establish a set of four datasets (CIFAR-100, Food-101, SVHN, and Tiny ImageNet) and evaluate the proposed objective in the context of few-shot and full-set training on the CBIR task, by using both convolutional and transformer architectures. Compared to existing objective functions, our empirical evidence shows that the proposed objective is generating superior and more consistent results

    Generating Visual Representations for Zero-Shot Classification

    Full text link
    This paper addresses the task of learning an image clas-sifier when some categories are defined by semantic descriptions only (e.g. visual attributes) while the others are defined by exemplar images as well. This task is often referred to as the Zero-Shot classification task (ZSC). Most of the previous methods rely on learning a common embedding space allowing to compare visual features of unknown categories with semantic descriptions. This paper argues that these approaches are limited as i) efficient discrimi-native classifiers can't be used ii) classification tasks with seen and unseen categories (Generalized Zero-Shot Classification or GZSC) can't be addressed efficiently. In contrast , this paper suggests to address ZSC and GZSC by i) learning a conditional generator using seen classes ii) generate artificial training examples for the categories without exemplars. ZSC is then turned into a standard supervised learning problem. Experiments with 4 generative models and 5 datasets experimentally validate the approach, giving state-of-the-art results on both ZSC and GZSC

    Zero-Shot Visual Recognition using Semantics-Preserving Adversarial Embedding Networks

    Full text link
    We propose a novel framework called Semantics-Preserving Adversarial Embedding Network (SP-AEN) for zero-shot visual recognition (ZSL), where test images and their classes are both unseen during training. SP-AEN aims to tackle the inherent problem --- semantic loss --- in the prevailing family of embedding-based ZSL, where some semantics would be discarded during training if they are non-discriminative for training classes, but could become critical for recognizing test classes. Specifically, SP-AEN prevents the semantic loss by introducing an independent visual-to-semantic space embedder which disentangles the semantic space into two subspaces for the two arguably conflicting objectives: classification and reconstruction. Through adversarial learning of the two subspaces, SP-AEN can transfer the semantics from the reconstructive subspace to the discriminative one, accomplishing the improved zero-shot recognition of unseen classes. Comparing with prior works, SP-AEN can not only improve classification but also generate photo-realistic images, demonstrating the effectiveness of semantic preservation. On four popular benchmarks: CUB, AWA, SUN and aPY, SP-AEN considerably outperforms other state-of-the-art methods by an absolute performance difference of 12.2\%, 9.3\%, 4.0\%, and 3.6\% in terms of harmonic mean value
    • …
    corecore