187 research outputs found

    Model Parameter Calibration in Power Systems

    Get PDF
    In power systems, accurate device modeling is crucial for grid reliability, availability, and resiliency. Many critical tasks such as planning or even realtime operation decisions rely on accurate modeling. This research presents an approach for model parameter calibration in power system models using deep learning. Existing calibration methods are based on mathematical approaches that suffer from being ill-posed and thus may have multiple solutions. We are trying to solve this problem by applying a deep learning architecture that is trained to estimate model parameters from simulated Phasor Measurement Unit (PMU) data. The data recorded after system disturbances proved to have valuable information to verify power system devices. A quantitative evaluation of the system results is provided. Results showed high accuracy in estimating model parameters of 0.017 MSE on the testing dataset. We also provide that the proposed system has scalability under the same topology. We consider these promising results to be the basis for further exploration and development of additional tools for parameter calibration

    Synchrophasor Technology And Applications: Benefits Over Conventional Measurements

    Get PDF
    The purpose of this thesis is to investigate the benefits of synchrophasor technology in bulk power system measurements. To accomplish this task, multiple methods of investigation and analysis have been conducted. First, a better understanding of the synchrophasor power measurement systems was achieved through a literature review. The review provided some perspective on the differences between these systems and the conventional systems of power measurements. Then, some utility grade data was acquired and analyzed. In this process, there were some aspects of confidentiality, and that required an added layer of discretion. However, the process made it possible to analyze a variety of authentic measurements from the power system. This analysis provides novelty to the utility industry, but the experience of physical implementation wasn’t available through this process. Finally, efforts were directed toward a physical demonstration of a synchrophasor measurement system. A test bed system was configured, and measurements were obtained from the system through phasor measurement units (PMUs). In an attempt to extent this demonstration effort, simulation options were investigated as well. Unfortunately, there are some limitations with the available equipment. Overall, this provided novelty to academia through a physical implementation of this technology. With changing demand, transmission, desires for efficiency, and an evolving generation fleet, extensive grid knowledge is important for maintaining a reliable power system

    Wide-Area Backup Protection Against Asymmetrical Faults Using Available Phasor Measurements

    Get PDF
    This paper proposes a robust and computationally efficient wide-area backup protection (WABP) scheme against asymmetrical faults on transmission systems using available synchronized/unsynchronized phasor measurements. Based on the substitution theorem, the proposed scheme replaces the faulted line with two suitable current sources. This results in a linear system of equations for WABP, with no need of full system observability by measurement devices. The identification of the faulted line is attributed to the sum of squared residuals (SoSR) of the developed system of equations. To preserve accuracy, the scheme limits the calculations to the assessment of the negative-sequence circuit of the gird. Relevant practical aspects that have not been properly addressed in the literature, namely the non-simultaneous opening of circuit breakers (CBs) and their single-pole tripping for single-phase to ground faults are investigated. The linearity of the formulations derived removes concerns over convergence speed and potential time-synchronization challenges. The proposed scheme is able to identify the faulted line and retain this capability for hundreds of milliseconds following the fault inception. More than 20 000 simulations conducted on the IEEE 39-bus test system verify the effectiveness of the proposed WABP scheme

    Synchrophasor Based Islanding & Open phase fault Protection in Distribution Systems

    Get PDF
    With the rapid growth of renewable energy resources, energy efficiency initiatives, electric vehicles, energy storage, etc., distribution systems are becoming more complex such that conventional protection, control, and measurement infrastructure – typically concentrated at the main substation, with little to no access to information along the feeder – cannot maintain the reliability of the system without some sort of additional protection, control and measurement functionalities. As an example, a dedicated communication channel for carrying the transfer trip signal from the substation to the Point of Common Coupling (PCC) to prevent islanding operation of alternative resources, has been a requirement for many utilities. In the transformation of the distribution system from a simple radial system to a bidirectional energy flow network, integration of many intelligent devices and applications will also be required. Thus, this situation calls for investment in communication infrastructure, and augmentation of protection, control, and measurement functionalities. The value of power system communication technologies such as synchrophasor measurement technology – which includes the Phasor Measurement Unit (measuring and providing voltage and current phasors in the real time via communication), communication infrastructure, and Phasor Data Concentrator (PDC) – is being recognized through large-scale deployments around the world. However, these implementations are predominantly limited to some monitoring-type applications and are being realized primarily in transmission systems and bulk power systems (≥100 kV), where performance requirements are much more stringent compared to distribution systems. So contrary to transmission systems, the current status of synchrophasor measurement technology can be utilized to its full extent in distribution systems, as shown in current research for anti-islanding and open-phase faults in the distribution feeder protection application, where the number of PMUs and performance required is somewhat lower than the bulk of power energy. Thus, the opportunity to invest in the implementation of synchronized measurement technology in distribution system is timely as it can be coordinated with other investments in feeder modernization, distributed generation (DG) integration, and infrastructure enhancements that are underway, including “smart grid” initiatives. In the first use case of this research, the behavior of the major DG types during islanding is studied through accurate transient modeling of utility type distribution systems using PSCAD-EMTDC and MATLAB. The study proposes augmentation of PMU-based solutions to the current passive islanding protection elements, such as voltage and frequency, and improving the non-detection zone of the passive elements by adapting their settings based on normal loading conditions at closest known instant prior to the fault or islanding occurrence. The solution proposes a system architecture that requires one PMU at each PCC bus and in the main substation. The communication aspect is based on the IEC 6850-90-5 report, where the PMU can subscribe directly to the data stream of the remote PMUs such that the need for PDCs in this application is eliminated, yielding better performance. In the second use case, an open-phase fault – a major concern for distribution utilities from safety of public and equipment perspective – has been studied. Clearing the open-phase fault without identifying the type of fault could result in an attempt by the recloser to reenergize the downed wire; conversely, an undetected open-phase fault could initiate ferro-resonance, thereby stressing equipment and increasing the risk to public safety, both urban and rural. This work discusses comprehensive analysis of symmetrical components of various types of open-phase faults in the distribution feeder with the presence of distributed generators (DGs) and proposes the use of phasor measurement data located at substation and PCC to identify the open-phase fault. The proposed algorithm relies on the rate of change of the various current and voltage sequence components. In the study conducted, the utility type feeder and substation are modeled in PSCAD-EMTDC, and different types of open-phase fault and shunt faults are studied to verify the dependability and security of proposed algorithm

    A fast data-driven topology identification method for dynamic state estimation applications

    Get PDF
    This paper proposes a fast topology identification method to avoid estimation errors caused by network topology changes. The algorithm applies a deep neural network to determine the switching state of the branches that are relevant for the execution of a dynamic state estimator. The proposed technique only requires data from the phasor measurement units (PMUs) that are used by the dynamic state estimator. The proposed methodology is demonstrated working in conjunction with a frequency divider-based synchronous machine rotor speed estimator. A centralized and a decentralized approach are proposed using a modified version of the New England test system and the Institute of Electrical and Electronics Engineers (IEEE) 118-bus test system, respectively. The numerical results in both test systems show that the method demonstrate the reliability and the low computational burden of the proposed algorithm. The method achieves a satisfactory speed, the decentralized approach simplifies the training process and the algorithm proves to be robust in the face of wrong input data.This work was funded by Agencia Estatal de InvestigaciĂłn MCIN/AEI/10.13039/501100011033 under Grant PID2019-104449RB-I00
    • …
    corecore