2,068 research outputs found

    Spatial Pyramid Context-Aware Moving Object Detection and Tracking for Full Motion Video and Wide Aerial Motion Imagery

    Get PDF
    A robust and fast automatic moving object detection and tracking system is essential to characterize target object and extract spatial and temporal information for different functionalities including video surveillance systems, urban traffic monitoring and navigation, robotic. In this dissertation, I present a collaborative Spatial Pyramid Context-aware moving object detection and Tracking system. The proposed visual tracker is composed of one master tracker that usually relies on visual object features and two auxiliary trackers based on object temporal motion information that will be called dynamically to assist master tracker. SPCT utilizes image spatial context at different level to make the video tracking system resistant to occlusion, background noise and improve target localization accuracy and robustness. We chose a pre-selected seven-channel complementary features including RGB color, intensity and spatial pyramid of HoG to encode object color, shape and spatial layout information. We exploit integral histogram as building block to meet the demands of real-time performance. A novel fast algorithm is presented to accurately evaluate spatially weighted local histograms in constant time complexity using an extension of the integral histogram method. Different techniques are explored to efficiently compute integral histogram on GPU architecture and applied for fast spatio-temporal median computations and 3D face reconstruction texturing. We proposed a multi-component framework based on semantic fusion of motion information with projected building footprint map to significantly reduce the false alarm rate in urban scenes with many tall structures. The experiments on extensive VOTC2016 benchmark dataset and aerial video confirm that combining complementary tracking cues in an intelligent fusion framework enables persistent tracking for Full Motion Video and Wide Aerial Motion Imagery.Comment: PhD Dissertation (162 pages

    Implicit Shape and Appearance Priors for Few-Shot Full Head Reconstruction

    Full text link
    Recent advancements in learning techniques that employ coordinate-based neural representations have yielded remarkable results in multi-view 3D reconstruction tasks. However, these approaches often require a substantial number of input views (typically several tens) and computationally intensive optimization procedures to achieve their effectiveness. In this paper, we address these limitations specifically for the problem of few-shot full 3D head reconstruction. We accomplish this by incorporating a probabilistic shape and appearance prior into coordinate-based representations, enabling faster convergence and improved generalization when working with only a few input images (even as low as a single image). During testing, we leverage this prior to guide the fitting process of a signed distance function using a differentiable renderer. By incorporating the statistical prior alongside parallelizable ray tracing and dynamic caching strategies, we achieve an efficient and accurate approach to few-shot full 3D head reconstruction. Moreover, we extend the H3DS dataset, which now comprises 60 high-resolution 3D full head scans and their corresponding posed images and masks, which we use for evaluation purposes. By leveraging this dataset, we demonstrate the remarkable capabilities of our approach in achieving state-of-the-art results in geometry reconstruction while being an order of magnitude faster than previous approaches

    Bayesian Optimization for Image Segmentation, Texture Flow Estimation and Image Deblurring

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Leveraging Supervoxels for Medical Image Volume Segmentation With Limited Supervision

    Get PDF
    The majority of existing methods for machine learning-based medical image segmentation are supervised models that require large amounts of fully annotated images. These types of datasets are typically not available in the medical domain and are difficult and expensive to generate. A wide-spread use of machine learning based models for medical image segmentation therefore requires the development of data-efficient algorithms that only require limited supervision. To address these challenges, this thesis presents new machine learning methodology for unsupervised lung tumor segmentation and few-shot learning based organ segmentation. When working in the limited supervision paradigm, exploiting the available information in the data is key. The methodology developed in this thesis leverages automatically generated supervoxels in various ways to exploit the structural information in the images. The work on unsupervised tumor segmentation explores the opportunity of performing clustering on a population-level in order to provide the algorithm with as much information as possible. To facilitate this population-level across-patient clustering, supervoxel representations are exploited to reduce the number of samples, and thereby the computational cost. In the work on few-shot learning-based organ segmentation, supervoxels are used to generate pseudo-labels for self-supervised training. Further, to obtain a model that is robust to the typically large and inhomogeneous background class, a novel anomaly detection-inspired classifier is proposed to ease the modelling of the background. To encourage the resulting segmentation maps to respect edges defined in the input space, a supervoxel-informed feature refinement module is proposed to refine the embedded feature vectors during inference. Finally, to improve trustworthiness, an architecture-agnostic mechanism to estimate model uncertainty in few-shot segmentation is developed. Results demonstrate that supervoxels are versatile tools for leveraging structural information in medical data when training segmentation models with limited supervision

    Improving the domain generalization and robustness of neural networks for medical imaging

    Get PDF
    Deep neural networks are powerful tools to process medical images, with great potential to accelerate clinical workflows and facilitate large-scale studies. However, in order to achieve satisfactory performance at deployment, these networks generally require massive labeled data collected from various domains (e.g., hospitals, scanners), which is rarely available in practice. The main goal of this work is to improve the domain generalization and robustness of neural networks for medical imaging when labeled data is limited. First, we develop multi-task learning methods to exploit auxiliary data to enhance networks. We first present a multi-task U-net that performs image classification and MR atrial segmentation simultaneously. We then present a shape-aware multi-view autoencoder together with a multi-view U-net, which enables extracting useful shape priors from complementary long-axis views and short-axis views in order to assist the left ventricular myocardium segmentation task on the short-axis MR images. Experimental results show that the proposed networks successfully leverage complementary information from auxiliary tasks to improve model generalization on the main segmentation task. Second, we consider utilizing unlabeled data. We first present an adversarial data augmentation method with bias fields to improve semi-supervised learning for general medical image segmentation tasks. We further explore a more challenging setting where the source and the target images are from different data distributions. We demonstrate that an unsupervised image style transfer method can bridge the domain gap, successfully transferring the knowledge learned from labeled balanced Steady-State Free Precession (bSSFP) images to unlabeled Late Gadolinium Enhancement (LGE) images, achieving state-of-the-art performance on a public multi-sequence cardiac MR segmentation challenge. For scenarios with limited training data from a single domain, we first propose a general training and testing pipeline to improve cardiac image segmentation across various unseen domains. We then present a latent space data augmentation method with a cooperative training framework to further enhance model robustness against unseen domains and imaging artifacts.Open Acces

    Motion Offset for Blur Modeling

    Get PDF
    Motion blur caused by the relative movement between the camera and the subject is often an undesirable degradation of the image quality. In most conventional deblurring methods, a blur kernel is estimated for image deconvolution. Due to the ill-posed nature, predefined priors are proposed to suppress the ill-posedness. However, these predefined priors can only handle some specific situations. In order to achieve a better deblurring performance on dynamic scene, deep-learning based methods are proposed to learn a mapping function that restore the sharp image from a blurry image. The blur may be implicitly modelled in feature extraction module. However, the blur modelled from the paired dataset cannot be well generalized to some real-world scenes. To summary, an accurate and dynamic blur model that more closely approximates real-world blur is needed. By revisiting the principle of camera exposure, we can model the blur with the displacements between sharp pixels and the exposed pixel, namely motion offsets. Given specific physical constraints, motion offsets are able to form different exposure trajectories (i.e. linear, quadratic). Compare to conventional blur kernel, our proposed motion offsets are a more rigorous approximation for real-world blur, since they can constitute a non-linear and non-uniform motion field. Through learning from dynamic scene dataset, an accurate and spatial-variant motion offset field is obtained. With accurate motion information and a compact blur modeling method, we explore the ways of utilizing motion information to facilitate multiple blur-related tasks. By introducing recovered motion offsets, we build up a motion-aware and spatial-variant convolution. For extracting a video clip from a blurry image, motion offsets can provide an explicit (non-)linear motion trajectory for interpolating. We also work towards a better image deblurring performance in real-world scenarios by improving the generalization ability of the deblurring model

    Advancements in seismic tomography with application to tunnel detection and volcano imaging

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 1998Practical geotomography is an inverse problem with no unique solution. A priori information must be imposed for a stable solution to exist. Commonly used types of a priori information smooth and attenuate anomalies, resulting in 'blurred' tomographic images. Small or discrete anomalies, such as tunnels, magma conduits, or buried channels are extremely difficult imaging objectives. Composite distribution inversion (CDI) is introduced as a theory seeking physically simple, rather than distributionally simple, solutions of non-unique problems. Parameters are assumed to be members of a composite population, including both well-known and anomalous components. Discrete and large amplitude anomalies are allowed, while a well-conditioned inverse is maintained. Tunnel detection is demonstrated using CDI tomography and data collected near the northern border of South Korea. Accurate source and receiver location information is necessary. Borehole deviation corrections are estimated by minimizing the difference between empirical distributions of apparent parameter values as a function of location correction. Improved images result. Traveltime computation and raytracing are the most computationally intensive components of seismic tomography when imaging structurally complex media. Efficient, accurate, and robust raytracing is possible by first recovering approximate raypaths from traveltime fields, and then refining the raypaths to a desired accuracy level. Dynamically binned queuing is introduced. The approach optimizes graph-theoretic traveltime computation costs. Pseudo-bending is modified to efficiently refine raypaths in general media. Hypocentral location density functions and relative phase arrival population analysis are used to investigate the Spring, 1996, earthquake swarm at Akutan Volcano, Alaska. The main swarm is postulated to have been associated with a 0.2 km\sp3 intrusion at a depth of less than four kilometers. Decay sequence seismicity is postulated to be a passive response to the stress transient caused by the intrusion. Tomograms are computed for Mt. Spurr, Augustine, and Redoubt Volcanoes, Alaska. Relatively large amplitude, shallow anomalies explain most of the traveltime residual. No large amplitude anomalies are found at depth, and no magma storage areas are imaged. A large amplitude low-velocity anomaly is coincident with a previously proposed geothermal region on the southeast flank of Mt. Spurr. Mt. St. Augustine is found to have a high velocity core
    corecore