18,260 research outputs found

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure

    On monotone circuits with local oracles and clique lower bounds

    Get PDF
    We investigate monotone circuits with local oracles [K., 2016], i.e., circuits containing additional inputs yi=yi(x⃗)y_i = y_i(\vec{x}) that can perform unstructured computations on the input string x⃗\vec{x}. Let μ∈[0,1]\mu \in [0,1] be the locality of the circuit, a parameter that bounds the combined strength of the oracle functions yi(x⃗)y_i(\vec{x}), and Un,k,Vn,k⊆{0,1}mU_{n,k}, V_{n,k} \subseteq \{0,1\}^m be the set of kk-cliques and the set of complete (k−1)(k-1)-partite graphs, respectively (similarly to [Razborov, 1985]). Our results can be informally stated as follows. 1. For an appropriate extension of depth-22 monotone circuits with local oracles, we show that the size of the smallest circuits separating Un,3U_{n,3} (triangles) and Vn,3V_{n,3} (complete bipartite graphs) undergoes two phase transitions according to μ\mu. 2. For 5≤k(n)≤n1/45 \leq k(n) \leq n^{1/4}, arbitrary depth, and μ≤1/50\mu \leq 1/50, we prove that the monotone circuit size complexity of separating the sets Un,kU_{n,k} and Vn,kV_{n,k} is nΘ(k)n^{\Theta(\sqrt{k})}, under a certain restrictive assumption on the local oracle gates. The second result, which concerns monotone circuits with restricted oracles, extends and provides a matching upper bound for the exponential lower bounds on the monotone circuit size complexity of kk-clique obtained by Alon and Boppana (1987).Comment: Updated acknowledgements and funding informatio

    Root finding with threshold circuits

    Get PDF
    We show that for any constant d, complex roots of degree d univariate rational (or Gaussian rational) polynomials---given by a list of coefficients in binary---can be computed to a given accuracy by a uniform TC^0 algorithm (a uniform family of constant-depth polynomial-size threshold circuits). The basic idea is to compute the inverse function of the polynomial by a power series. We also discuss an application to the theory VTC^0 of bounded arithmetic.Comment: 19 pages, 1 figur
    • …
    corecore