12 research outputs found

    Modeling Of Contraction Of Ionic Polymer Metal Composite (IPMC) Actuated Cylindrical Micro Pump

    Get PDF

    Intelligent actuator valve for hydraulic systems

    Get PDF
    Este documento presenta la implementación y el desarrollo de un actuador inteligente basado en norma IEEE 1451 y complementándolo con un estado del arte actual. La implementación se desarrolló con elementos electrónicos de bajo consto. La norma IEEE 1451 especifica que como elementos principales de un actuador inteligente debe haber un actuador, una unidad de procesamiento y un sistema de comunicación, como actuador se utilizó una válvula de bola la cual es accionada por medio de un servomotor el cual a su vez es accionado por el sistema de desarrollo arduino, la parte principal del control es la raspberry la cual se comunicó con el arduino a través del protocolo SSH, la raspberry permite la comunicación a través de Ethernet o una red local a cualquier dispositivo, además el arduino tiene una comunicación directa a una tarjeta de National Instruments para hacer control análogo de los actuadores y poder controlarlos desde una interfaz.This paper presents the implementation and development of an intelligent actuator based on standard IEEE 1451 and supplemented by a state of contemporary art.The implementation was developed with low group contained electronic elements.The IEEE 1451 standard specifies that main elements of an intelligent actuator must have an actuator, a processing unit and a communication system, as actuator a ball valve which is actuated by a servomotor is used which in turn is driven by the card arduino programming because of its great capacity to control motors, the main part of control is the raspberry which communicated with Arduino through SSH, the raspberry allows communication via Ethernet or a LAN any device, and the Arduino has a direct communication to a national instrument card for analog control actuators and to control them from one interface

    Pattern recognition-based real-time myoelectric control for anthropomorphic robotic systems : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mechatronics at Massey University, Manawatū, New Zealand

    Get PDF
    All copyrighted Figures have been removed but may be accessed via their source cited in their respective captions.Advanced human-computer interaction (HCI) or human-machine interaction (HMI) aims to help humans interact with computers smartly. Biosignal-based technology is one of the most promising approaches in developing intelligent HCI systems. As a means of convenient and non-invasive biosignal-based intelligent control, myoelectric control identifies human movement intentions from electromyogram (EMG) signals recorded on muscles to realise intelligent control of robotic systems. Although the history of myoelectric control research has been more than half a century, commercial myoelectric-controlled devices are still mostly based on those early threshold-based methods. The emerging pattern recognition-based myoelectric control has remained an active research topic in laboratories because of insufficient reliability and robustness. This research focuses on pattern recognition-based myoelectric control. Up to now, most of effort in pattern recognition-based myoelectric control research has been invested in improving EMG pattern classification accuracy. However, high classification accuracy cannot directly lead to high controllability and usability for EMG-driven systems. This suggests that a complete system that is composed of relevant modules, including EMG acquisition, pattern recognition-based gesture discrimination, output equipment and its controller, is desirable and helpful as a developing and validating platform that is able to closely emulate real-world situations to promote research in myoelectric control. This research aims at investigating feasible and effective EMG signal processing and pattern recognition methods to extract useful information contained in EMG signals to establish an intelligent, compact and economical biosignal-based robotic control system. The research work includes in-depth study on existing pattern recognition-based methodologies, investigation on effective EMG signal capturing and data processing, EMG-based control system development, and anthropomorphic robotic hand design. The contributions of this research are mainly in following three aspects: Developed precision electronic surface EMG (sEMG) acquisition methods that are able to collect high quality sEMG signals. The first method was designed in a single-ended signalling manner by using monolithic instrumentation amplifiers to determine and evaluate the analog sEMG signal processing chain architecture and circuit parameters. This method was then evolved into a fully differential analog sEMG detection and collection method that uses common commercial electronic components to implement all analog sEMG amplification and filtering stages in a fully differential way. The proposed fully differential sEMG detection and collection method is capable of offering a higher signal-to-noise ratio in noisy environments than the single-ended method by making full use of inherent common-mode noise rejection capability of balanced signalling. To the best of my knowledge, the literature study has not found similar methods that implement the entire analog sEMG amplification and filtering chain in a fully differential way by using common commercial electronic components. Investigated and developed a reliable EMG pattern recognition-based real-time gesture discrimination approach. Necessary functional modules for real-time gesture discrimination were identified and implemented using appropriate algorithms. Special attention was paid to the investigation and comparison of representative features and classifiers for improving accuracy and robustness. A novel EMG feature set was proposed to improve the performance of EMG pattern recognition. Designed an anthropomorphic robotic hand construction methodology for myoelectric control validation on a physical platform similar to in real-world situations. The natural anatomical structure of the human hand was imitated to kinematically model the robotic hand. The proposed robotic hand is a highly underactuated mechanism, featuring 14 degrees of freedom and three degrees of actuation. This research carried out an in-depth investigation into EMG data acquisition and EMG signal pattern recognition. A series of experiments were conducted in EMG signal processing and system development. The final myoelectric-controlled robotic hand system and the system testing confirmed the effectiveness of the proposed methods for surface EMG acquisition and human hand gesture discrimination. To verify and demonstrate the proposed myoelectric control system, real-time tests were conducted onto the anthropomorphic prototype robotic hand. Currently, the system is able to identify five patterns in real time, including hand open, hand close, wrist flexion, wrist extension and the rest state. With more motion patterns added in, this system has the potential to identify more hand movements. The research has generated a few journal and international conference publications

    Smart Devices and Systems for Wearable Applications

    Get PDF
    Wearable technologies need a smooth and unobtrusive integration of electronics and smart materials into textiles. The integration of sensors, actuators and computing technologies able to sense, react and adapt to external stimuli, is the expression of a new generation of wearable devices. The vision of wearable computing describes a system made by embedded, low power and wireless electronics coupled with smart and reliable sensors - as an integrated part of textile structure or directly in contact with the human body. Therefore, such system must maintain its sensing capabilities under the demand of normal clothing or textile substrate, which can impose severe mechanical deformation to the underlying garment/substrate. The objective of this thesis is to introduce a novel technological contribution for the next generation of wearable devices adopting a multidisciplinary approach in which knowledge of circuit design with Ultra-Wide Band and Bluetooth Low Energy technology, realization of smart piezoresistive / piezocapacitive and electro-active material, electro-mechanical characterization, design of read-out circuits and system integration find a fundamental and necessary synergy. The context and the results presented in this thesis follow an “applications driven” method in terms of wearable technology. A proof of concept has been designed and developed for each addressed issue. The solutions proposed are aimed to demonstrate the integration of a touch/pressure sensor into a fabric for space debris detection (CApture DEorbiting Target project), the effectiveness of the Ultra-Wide Band technology as an ultra-low power data transmission option compared with well known Bluetooth (IR-UWB data transmission project) and to solve issues concerning human proximity estimation (IR-UWB Face-to-Face Interaction and Proximity Sensor), wearable actuator for medical applications (EAPtics project) and aerospace physiology countermeasure (Gravity Loading Countermeasure Skinsuit project)

    Design and fabrication of flexible tactile sensing and feedback interface for communication by deafblind people

    Get PDF
    Humans generally interact and communicate using five basic sensory modalities and mainly through vision, touch and audio. However, this does not work for deafblind people as they have both impaired hearing and vision modalities, and hence rely on touch-sensing. This necessitates the development of alternative means that allows them to independently interact and communicate. To do this requires a solution which has the capability for tactile sensing and feedback. Therefore, tactile interface becomes a critical component of any assistive device usable by deafblind people for interaction and communication. Given that existing solutions mainly use rigid and commercial components, there is a need to tap into the advancements in flexible electronics in order develop more effective and conformable solutions. This research involves the development of flexible tactile communication interface usable in assistive communication devices for deafblind people. First, commercial sensors and actuators were utilised as a proof-of-concept and then four novel tactile interfaces were explored which include two similar touch-sensitive electromagnetic actuators, one capacitive tactile sensing array, and a facile flexible inductance-based pressure sensor. The two fabricated touch-sensitive electromagnetic actuators (Type 1 and 2) are both based on electromagnetic principle and capable of simultaneous tactile sensing and feedback. Each comprises of a tandem combination of two main modules - the touch-sensing and the actuation module, with both modules integrated as a single device in each case. The actuation module employs a flexible planar spiral coil and a Neodymium magnet assembled in a soft Polydimethylsiloxane (PDMS) structure, while the touch-sensing module is a planar capacitive metal- insulator-metal structure of copper. The flexible coil (~17µm thick and with 45 turns) was fabricated on a Polyimide sheet using Lithographie Galvanoformung Abformung (LIGA) process. The results of characterisation of these actuators at frequencies ranging from 10Hz to 200Hz, shows a maximum displacement (~ 190µm) around 40Hz. Evaluation of this by 40 (20 deafblind and 20 sighted and hearing) participants show that they can feel vibration at this range. Another tactile interface fabricated is an 8 x 8 capacitive tactile sensing array. The sensor was developed on a flexible Polyvinyl Chloride (PVC) sheet with column electrodes deposited on one side and row electrodes on the reverse side. It is intended for use as an assistive tactile communication interface for deafblind people who communicate using deafblind manual alphabets as well as the English block letters. An inductance-based pressure sensor was also designed, fabricated and characterised for use as an input interface for finger Braille as well as other tactile communication methods for deafblind people. It was realised with a soft ferromagnetic elastomer and a 17µm-thick coil fabricated on a flexible 50 µm-thick polyimide sheet. The ferromagnetic elastomer acts as the core of the coil, which when pressed, sees the metal particles moving closer to each other, leading to changes in the inductance. The coil, with 75µm conductor and 25µm pitch, was also realised using LIGA micromolding technique. Seven different sensors were fabricated using different ratios (1:1, 1:2, 1:3, 1:5, 2:1, 3:1, and 5:1) of Ecoflex to Iron particles. The performance of each sensor was investigated and generally, sensors with higher Iron particles gave better sensitivity, linear as well as dynamic range. In comparison with all other fabricated sensors, the sensor made with 1:5DD was recommended for application as a tactile interface

    Soft Robotic Exo-muscular Arm Brace

    Get PDF
    The goal of this project is to assist patients with impaired movement and to regain control of their arm. A robotic brace was developed to assist with movement, using signals generated from the user’s muscles to drive the arm. This brace was biologically inspired, allowing the user to complete the range of motions of a healthy individual. Different actuators and sensors were evaluated in order to design the best model for home and patient use. Boards were developed to achieve desired values from signals that were read. Classifications were also created to accurately assess the movements the user wanted to perfor

    Raamistik mobiilsete asjade veebile

    Get PDF
    Internet on oma arengus läbi aastate jõudnud järgmisse evolutsioonietappi - asjade internetti (ingl Internet of Things, lüh IoT). IoT ei tähista ühtainsat tehnoloogiat, see võimaldab eri seadmeil - arvutid, mobiiltelefonid, autod, kodumasinad, loomad, virtuaalsensorid, jne - omavahel üle Interneti suhelda, vajamata seejuures pidevat inimesepoolset seadistamist ja juhtimist. Mobiilseadmetest nagu näiteks nutitelefon ja tahvelarvuti on saanud meie igapäevased kaaslased ning oma mitmekülgse võimekusega on nad motiveerinud teadustegevust mobiilse IoT vallas. Nutitelefonid kätkevad endas võimekaid protsessoreid ja 3G/4G tehnoloogiatel põhinevaid internetiühendusi. Kuid kui kasutada seadmeid järjepanu täisvõimekusel, tühjeneb mobiili aku kiirelt. Doktoritöö esitleb energiasäästlikku, kergekaalulist mobiilsete veebiteenuste raamistikku anduriandmete kogumiseks, kasutades kergemaid, energiasäästlikumaid suhtlustprotokolle, mis on IoT keskkonnale sobilikumad. Doktoritöö käsitleb põhjalikult energia kokkuhoidu mobiilteenuste majutamisel. Töö käigus loodud raamistikud on kontseptsiooni tõestamiseks katsetatud mitmetes juhtumiuuringutes päris seadmetega.The Internet has evolved, over the years, from just being the Internet to become the Internet of Things (IoT), the next step in its evolution. IoT is not a single technology and it enables about everything from computers, mobile phones, cars, appliances, animals, virtual sensors, etc. that connect and interact with each other over the Internet to function free from human interaction. Mobile devices like the Smartphone and tablet PC have now become essential to everyday life and with extended capabilities have motivated research related to the mobile Internet of Things. Although, the recently developed Smartphones enjoy the high performance and high speed 3G/4G mobile Internet data transmission services, such high speed performances quickly drain the battery power of the mobile device. This thesis presents an energy efficient lightweight mobile Web service provisioning framework for mobile sensing utilizing the protocols that were designed for the constrained IoT environment. Lightweight protocols provide an energy efficient way of communication. Finally, this thesis highlights the energy conservation of the mobile Web service provisioning, the developed framework, extensively. Several case studies with the use of the proposed framework were implemented on real devices and has been thoroughly tested as a proof-of-concept.https://www.ester.ee/record=b522498
    corecore