1,277 research outputs found

    Breakthrough in cardiac arrest: reports from the 4th Paris International Conference

    Get PDF

    New techniques for neuro-rehabilitation: Transcranial Electric Stimulation and Virtual Reality

    Get PDF
    Recovery of motor and cognitive performances after a neurological illness remains a significant challenge for rehabilitation specialists. The traditional rehabilitative interventions are usually delivered using a multidisciplinary approach, whose results are not always satisfactory. These limitations in functional recovery have led researchers to consider alternative approaches. The hypothesis of providing new therapeutic possibilities in the different patients treated is, as a rehabilitator, very rewarding and represents a challenge for the future. The application of simple and low-cost techniques, defined by the literature as "unconventional" or “novel”, can provide new ideas not only in the field of research but above all of application in clinical reality.A suitable approach to improve the rehabilitation outcome is to utilize these novel rehabilitation techniques that act as a substitute or an addition to the traditional ones. In this context, some recent approaches have been proposed that might increase the effectiveness of a traditional treatment. Among them, two techniques have been demonstrated to be very promising, namely non-invasive brain stimulation (NIBS) and Virtual Reality (VR).In light of the foregoing, my thesis has been divided into two main lines of research, namely: a) the study of the effects of transcranial direct current stimulation (tDCS) in different neurological conditions; b) the application of VR (used alone or combined with tDCS) in the treatment of some neurocognitive disorders. A semi-immersive VR tool (ReMOVES system) has been used as a user-friendly platform providing activities based on exergames

    New Insight into Cerebrovascular Diseases

    Get PDF
    “Brain circulation is a true road map that consists of large extended navigation territories and a number of unimagined and undiscovered routes.” Dr. Patricia Bozzetto Ambrosi This book combines an update on the review of cerebrovascular diseases in the form of textbook chapters, which has been carefully reviewed by Dr. Patricia Bozzetto Ambrosi, Drs. Rufai Ahmad and Auwal Abdullahi and Dr. Amit Agrawal, high-performance academic editors with extensive experience in neurodisciplines, including neurology, neurosurgery, neuroscience, and neuroradiology, covering the best standards of neurological practice involving basic and clinical aspects of cerebrovascular diseases. Each topic was carefully revised and prepared using smooth, structured vocabulary, plus superb graphics and scientific illustrations. In emphasizing the most common aspects of cerebrovascular diseases: stroke burden, pathophysiology, hemodynamics, diagnosis, management, repair, and healing, the book is comprehensive but concise and should become the standard reference guide for this neurological approach

    Olfactory ensheathing cells for central nervous system repair: A ventral root model for intraspinal brachial plexus repair in the rat

    Get PDF
    Brachial plexus avulsion injuries occurring at the central nervous system and peripheral nervous system transition zone are often referred to as longitudinal spinal cord injuries. A number of surgical procedures, including intraspinal ventral root reimplantation, have been devised to treat these injuries but hand function rarely recovers and there is no cure. A number of preclinical and clinical studies have attempted to use cellular therapies for spinal cord injury repair. To this regard the olfactory ensheathing cell, obtained from the olfactory pathways, has shown promise but remains controversial. These cells have not previously been investigated in a brachial plexus repair model but their reparative and regenerative properties gives them investigative potential. In order to replicate a brachial plexus injury affecting the human hand, we have devised a rodent model of C8 ventral root repair. We used histological analysis and immunohistochemistry staining with neurofilament and glial fibrillary acidic protein to assess the repair. Tests were developed to assess neuronal continuity across the repair site using retrograde tracers. Functional tests were developed to quantify forepaw injury and recovery. Once a model was established, four experimental study groups consisting of left C8 ventral root avulsion, reimplantation, and transplantation of mucosal and bulb olfactory ensheathing cells were devised. Our results demonstrate that reimplantation of the ventral root after avulsion led to a significantly improved left paw spread recovery and survival of motor neurones compared to the avulsion group. Transplantation of mucosal and bulb olfactory ensheathing cells led to a significantly improved recovery in paw spread, increased survival of motor neurones, and less forepaw deformity and autotomy, compared to the reimplantation group. These results suggest that olfactory ensheathing cells can promote central nervous system recovery in adult rats and add promise to their translational potential for brachial plexus repair in humans

    The flavonoid quercetin and its potential as neuroprotectant in the therapy of acute traumatic CNS Injury : an experimental study

    Get PDF
    Every year, several thousand individuals suffer spinal cord injury (SCI) in North America, while 1.5 million suffer traumatic brain injury in the U.S.A. alone. Primary mechanical trauma to the CNS is followed by a complex pathology, including vascular dysregulation, ischemia, edema and traumatic hemorrhage. Secondary damage is to a large extent caused by oxidative stress and inflammatory processes, resulting in necrosis and apoptosis of neural cells. If secondary tissue injury could be limited by interference with any of the pathomechanisms involved, preservation of structure and function would increase the potential for functional recovery. Experiments performed in other laboratories have shown that the polyphenolic flavonoid quercetin acts as an anti-oxidant and anti-inflammatory, reduces edema formation and apoptotic cell death. Quercetin is also an excellent iron chelator. This action profile suggested a high therapeutic potential for acute CNS trauma. Therefore, I used models of both spinal cord injury and head trauma in adult male rats to test the hypothesis that administration of quercetin is beneficial for the therapy of acute traumatic CNS injury. While the primary focus of my work was on therapy of acute traumatic spinal cord injury, quercetin was also evaluated in the settings of chronic SCI and acute head trauma. I found that, in a rat model of mid-thoracic spinal cord compression injury, 1) administration of quercetin, starting 1 hr after injury and continued every 12 hr, improved recovery of motor function in the hind limbs in more than half of the injured animals to a degree that allowed previously paraplegic animals to step or walk. The minimum quercetin dose that was efficacious was 5 µmol/kg. The minimum treatment duration for optimal outcome was determined to be 3 days. In control animals, some spontaneous recovery of motor function did occur, but never to an extent that allowed animals to step or walk. Quercetin administration was associated with more efficient iron clearance from the site of injury, decreased inflammatory response as reflected in decrease of myeloperoxidase activity and decreased apoptosis of neural cells at the site of injury. 2) Quercetin administered in the same injury model as late as 2 weeks after injury, given in a higher dose than that used for treatment in the acute phase, still resulted in significant recovery of motor function in 40% of the injured animals, although at a lower level of performance, when compared to early onset of treatment. 3) Quercetin administered after moderate fluid percussion brain injury resulted in decreased oxidative stress, as reflected in higher tissue glutathione levels at the site of injury. In animals receiving quercetin, the amplitude of compound action potentials was significantly better maintained at 24 hr and 72 hr after injury than in saline-treated control animals. My experiments have shown that the flavonoid quercetin is neuroprotective in a rat model of brain trauma and in a rat model of spinal cord injury. My data show that administration of quercetin after CNS trauma promotes iron clearance, decreases oxidative stress and inflammation. Quercetin also decreases apoptotic cell death following neurotrauma. These results suggest that quercetin may be a valuable adjunct in the therapy of acute CNS trauma. There is a possibility that administration of quercetin may be beneficial even in certain settings of chronic CNS trauma. These conclusions are based solely on the results from animal experiments. However, the fact that few adverse reactions have been noted to date in either animal experiments or human trials targeting other diseases is encouraging for the progression to human clinical trials for patients with spinal cord injury

    Proceedings of the 10th international conference on disability, virtual reality and associated technologies (ICDVRAT 2014)

    Get PDF
    The proceedings of the conferenc

    Pathophysiology of Spinal Cord Injury (SCI)

    Get PDF
    Spinal cord injury (SCI) leads to paralysis, sensory, and autonomic nervous system dysfunctions. However, the pathophysiology of SCI is complex, and not limited to the nervous system. Indeed, several other organs and tissue are also affected by the injury, directly or not, acutely or chronically, which induces numerous health complications. Although a lot of research has been performed to repair motor and sensory functions, SCI-induced health issues are less studied, although they represent a major concern among patients. There is a gap of knowledge in pre-clinical models studying these SCI-induced health complications that limits translational applications in humans. This reprint describes several aspects of the pathophysiology of spinal cord injuries. This includes, but is not limited to, the impact of SCI on cardiovascular and respiratory functions, bladder and bowel function, autonomic dysreflexia, liver pathology, metabolic syndrome, bones and muscles loss, and cognitive functions

    Prediction of poor neurological outcome in comatose survivors of cardiac arrest: a systematic review.

    Get PDF
    To assess the ability of clinical examination, blood biomarkers, electrophysiology, or neuroimaging assessed within 7 days from return of spontaneous circulation (ROSC) to predict poor neurological outcome, defined as death, vegetative state, or severe disability (CPC 3-5) at hospital discharge/1 month or later, in comatose adult survivors from cardiac arrest (CA). PubMed, EMBASE, Web of Science, and the Cochrane Database of Systematic Reviews (January 2013-April 2020) were searched. Sensitivity and false-positive rate (FPR) for each predictor were calculated. Due to heterogeneities in recording times, predictor thresholds, and definition of some predictors, meta-analysis was not performed. Ninety-four studies (30,200 patients) were included. Bilaterally absent pupillary or corneal reflexes after day 4 from ROSC, high blood values of neuron-specific enolase from 24 h after ROSC, absent N20 waves of short-latency somatosensory-evoked potentials (SSEPs) or unequivocal seizures on electroencephalogram (EEG) from the day of ROSC, EEG background suppression or burst-suppression from 24 h after ROSC, diffuse cerebral oedema on brain CT from 2 h after ROSC, or reduced diffusion on brain MRI at 2-5 days after ROSC had 0% FPR for poor outcome in most studies. Risk of bias assessed using the QUIPS tool was high for all predictors. In comatose resuscitated patients, clinical, biochemical, neurophysiological, and radiological tests have a potential to predict poor neurological outcome with no false-positive predictions within the first week after CA. Guidelines should consider the methodological concerns and limited sensitivity for individual modalities. (PROSPERO CRD42019141169)
    corecore