143 research outputs found

    Bistatic noise radar: Demonstration of correlation noise suppression

    Get PDF
    In this study, spatial separation of the radar transmitter and receiver units is considered, as a means of reducing the masking effect in noise radars. A bistatic radar system is constructed, with emphasis on a lightweight transmitter unit that can be mounted on a commercial Unmanned Aerial Vehicle (UAV). The system uses pseudo-random noise, generated digitally at the receiver and transmitter units. Correlation losses, due to non-linearities in the transmitter and receiver units, are measured to 0.1\ua0dB. This study shows that by separating the transmitter and receiver unit the masking effect is significantly reduced, compared to a monostatic setup. This reduction is enough for the system to detect a slow flying UAV. Thus, bistatic separation should be considered as a practical tool to reduce the masking effect. By processing clutter with an extended CLEAN algorithm, the correlation noise floor is further suppressed

    Signal design and processing for noise radar

    Get PDF
    An efficient and secure use of the electromagnetic spectrum by different telecommunications and radar systems represents, today, a focal research point, as the coexistence of different radio-frequency sources at the same time and in the same frequency band requires the solution of a non-trivial interference problem. Normally, this is addressed with diversity in frequency, space, time, polarization, or code. In some radar applications, a secure use of the spectrum calls for the design of a set of transmitted waveforms highly resilient to interception and exploitation, i.e., with low probability of intercept/ exploitation capability. In this frame, the noise radar technology (NRT) transmits noise-like waveforms and uses correlation processing of radar echoes for their optimal reception. After a review of the NRT as developed in the last decades, the aim of this paper is to show that NRT can represent a valid solution to the aforesaid problems

    Development and Evaluation of a Multistatic Ultrawideband Random Noise Radar

    Get PDF
    This research studies the AFIT noise network (NoNET) radar node design and the feasibility in processing the bistatic channel information of a cluster of widely distributed noise radar nodes. A system characterization is used to predict theoretical localization performance metrics. Design and integration of a distributed and central signal and data processing architecture enables the Matlab®-driven signal data acquisition, digital processing and multi-sensor image fusion. Experimental evaluation of the monostatic localization performance reveals its range measurement error standard deviation is 4.8 cm with a range resolution of 87.2(±5.9) cm. The 16-channel multistatic solution results in a 2-dimensional localization error of 7.7(±3.1) cm and a comparative analysis is performed against the netted monostatic solution. Results show that active sensing with a low probability of intercept (LPI) multistatic radar, like the NoNET, is capable of producing sub-meter accuracy and near meter-resolution imagery

    An underwater acoustic communication scheme exploiting biological sounds

    Get PDF
    Underwater acoustic (UWA) communications have attracted a lot of interest in recent years motivated by a wide range of applications including offshore oil field exploration and monitoring, oceanographic data collection, environmental monitoring, disaster prevention, and port security. Different signaling solutions have been developed to date including non-coherent communications, phase coherent systems, multi-input and multi-output solutions, time-reversal-based communication systems, and multi-carrier transmission approaches. This paper deviates from the traditional approaches to UWA communications and develops a scheme that exploits biomimetic signals. In the proposed scheme, a transmitter maps the information bits to the parameters of a biomimetic signal, which is transmitted over the channel. The receiver estimates the parameters of the received signal and demaps them back to bits to estimate the message. As exemplary biomimetic signals, analytical signal models with nonlinear instantaneous frequency are developed that match mammal sound signatures in the time-frequency plane are developed. Suitable receiver structures as well as performance analysis are provided for the proposed transmission scheme, and some results using data recorded during the Kauai Acomms MURI 2011 UWA communications experiment are presented. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd

    Power minimization based robust OFDM radar waveform design for radar and communication systems in coexistence.

    Get PDF
    This paper considers the problem of power minimization based robust orthogonal frequency division multiplexing (OFDM) radar waveform design, in which the radar coexists with a communication system in the same frequency band. Recognizing that the precise characteristics of target spectra are impossible to capture in practice, it is assumed that the target spectra lie in uncertainty sets bounded by known upper and lower bounds. Based on this uncertainty model, three different power minimization based robust radar waveform design criteria are proposed to minimize the worst-case radar transmitted power by optimizing the OFDM radar waveform, which are constrained by a specified mutual information (MI) requirement for target characterization and a minimum capacity threshold for communication system. These criteria differ in the way the communication signals scattered off the target are considered: (i) as useful energy, (ii) as interference or (iii) ignored altogether at the radar receiver. Numerical simulations demonstrate that the radar transmitted power can be efficiently reduced by exploiting the communication signals scattered off the target at the radar receiver. It is also shown that the robust waveforms bound the worst-case power-saving performance of radar system for any target spectra in the uncertainty sets

    Investigation of Non-coherent Discrete Target Range Estimation Techniques for High-precision Location

    Get PDF
    Ranging is an essential and crucial task for radar systems. How to solve the range-detection problem effectively and precisely is massively important. Meanwhile, unambiguity and high resolution are the points of interest as well. Coherent and non-coherent techniques can be applied to achieve range estimation, and both of them have advantages and disadvantages. Coherent estimates offer higher precision but are more vulnerable to noise and clutter and phase wrap errors, particularly in a complex or harsh environment, while the non-coherent approaches are simpler but provide lower precision. With the purpose of mitigating inaccuracy and perturbation in range estimation, miscellaneous techniques are employed to achieve optimally precise detection. Numerous elegant processing solutions stemming from non-coherent estimate are now introduced into the coherent realm, and vice versa. This thesis describes two non-coherent ranging estimate techniques with novel algorithms to mitigate the instinct deficit of non-coherent ranging approaches. One technique is based on peak detection and realised by Kth-order Polynomial Interpolation, while another is based on Z-transform and realised by Most-likelihood Chirp Z-transform. A two-stage approach for the fine ranging estimate is applied to the Discrete Fourier transform domain of both algorithms. An N-point Discrete Fourier transform is implemented to attain a coarse estimation; an accurate process around the point of interest determined in the first stage is conducted. For KPI technique, it interpolates around the peak of Discrete Fourier transform profiles of the chirp signal to achieve accurate interpolation and optimum precision. For Most-likelihood Chirp Z-transform technique, the Chirp Z-transform accurately implements the periodogram where only a narrow band spectrum is processed. Furthermore, the concept of most-likelihood estimator is introduced to combine with Chirp Z-transform to acquire better ranging performance. Cramer-Rao lower bound is presented to evaluate the performance of these two techniques from the perspective of statistical signal processing. Mathematical derivation, simulation modelling, theoretical analysis and experimental validation are conducted to assess technique performance. Further research will be pushed forward to algorithm optimisation and system development of a location system using non-coherent techniques and make a comparison to a coherent approach

    A new signaling scheme for Underwater Acoustic communications

    Get PDF
    Underwater Acoustic (UWA) communications has attracted a lot of interest in recent years motivated by a wide range of applications. Different signaling solutions have been developed to date including non-coherent communications, phase coherent systems, multi-input multi-output (MIMO) solutions and multi-carrier based approaches. In this paper, we develop a novel UWA communications paradigm using biomimetic signals. In our scheme, digital information is mapped to the parameters of a class of biomimetic signal set and at the receiver an estimator to obtain the parameter values is utilized. To facilitate this, we develop analytical signal models with nonlinear instantaneous frequencies matching mammalian sound signatures in the time-frequency plane. We provide suitable receiver structures, and present decoding results using data recorded during the Kauai Acomms MURI 2011 (KAM11) UWA communications experiment. © 2013 MTS

    Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead

    Get PDF
    Sharing of the frequency bands between radar and communication systems has attracted substantial attention, as it can avoid under-utilization of otherwise permanently allocated spectral resources, thus improving efficiency. Further, there is increasing demand for radar and communication systems that share the hardware platform as well as the frequency band, as this not only decongests the spectrum, but also benefits both sensing and signaling operations via the full cooperation between both functionalities. Nevertheless, the success of spectrum and hardware sharing between radar and communication systems critically depends on high-quality joint radar and communication designs. In the first part of this paper, we overview the research progress in the areas of radar-communication coexistence and dual-functional radar-communication (DFRC) systems, with particular emphasis on application scenarios and technical approaches. In the second part, we propose a novel transceiver architecture and frame structure for a DFRC base station (BS) operating in the millimeter wave (mmWave) band, using the hybrid analog-digital (HAD) beamforming technique. We assume that the BS is serving a multi-antenna user equipment (UE) over a mmWave channel, and at the same time it actively detects targets. The targets also play the role of scatterers for the communication signal. In that framework, we propose a novel scheme for joint target search and communication channel estimation, which relies on omni-directional pilot signals generated by the HAD structure. Given a fully-digital communication precoder and a desired radar transmit beampattern, we propose to design the analog and digital precoders under non-convex constant-modulus (CM) and power constraints, such that the BS can formulate narrow beams towards all the targets, while pre-equalizing the impact of the communication channel. Furthermore, we design a HAD receiver that can simultaneously process signals from the UE and echo waves from the targets. By tracking the angular variation of the targets, we show that it is possible to recover the target echoes and mitigate the resulting interference to the UE signals, even when the radar and communication signals share the same signal-to-noise ratio (SNR). The feasibility and efficiency of the proposed approaches in realizing DFRC are verified via numerical simulations. Finally, the paper concludes with an overview of the open problems in the research field of communication and radar spectrum sharing (CRSS)
    corecore