1,002 research outputs found

    Stitched transmission lines for wearable RF devices

    Get PDF
    With the rapid growth and use of wearable devices over the last decade, the advantages of using portable wearable devices are now been utilised for day to day activities. These wearable devices are designed to be flexible, low profile, light-weight and smoothly integrated into daily life. Wearable transmission lines are required to transport RF signals between various pieces of wearable communication equipment and to connect fabric based antennas to transmitters and receivers; the stitched transmission line is one of the hardware solutions developed to enhance the connectivity between these wearable devices. Textile manufacturing techniques that employ the use of sewing machines alongside conductive textile materials can be used to fabricate the stitched transmission line. In this thesis the feasibility of using a sewing machine in fabrication of a novel stitched transmission line for wearable devices using the idea of a braided coaxial cable have been examined. The sewing machine used is capable of a zig-zag stitch with approximate width and length within the range of 0-6 mm and 0-4mm respectively. The inner conductor and the tubular insulated layer of the stitched transmission lines were selected as RG 174, while the stitched shields were made up of copper wires and conductive threads from Light Stiches®. For shielding purpose, the structure is stitched onto a denim material with a conductive thread with the aid of a novel manufacturing technique using a standard hardware. The Scattering Parameters of the stitched transmission line were investigated with three different stitch angles 85°,65° and 31° through simulation and experiments, with the results demonstrating that the stitched transmission line can work usefully and consistently from 0.04 4. The extracted Scattering parameters indicated a decrease in DC loss with increased stitch angle and an increase in radiation loses, which tends to increase with increase in frequency. The proposed stitched transmission line makes a viable transmission line but a short stitch length is associated with larger losses through resistance. The DC losses observed are mainly influenced by the resistance of the conductive threads at lower frequencies while the radiation losses are influenced by the wider apertures related to the stitch angles and increase in frequency along the line. The performances of the stitched transmission line with different stitch patterns, when subjected to washing cycles and when bent through curved angles 90° and 180° were also investigated and results presented. ii Also, the sensitivity of the design to manufacturing tolerances was also considered. First the behaviour of the stitched transmission line with two different substrates Denim and Felt were investigated with the results indicating an insignificant increase in losses with the Denim material. Secondly, the sensitivity of the design with variations in cross section dimensions was investigated using numerical modelling techniques and the results showed that the impedance of the stitched transmission line increases when the cross sectional dimensions are decreased by 0.40 and decreases when the cross sectional dimensions are increased by 0.40. Equally, repeatability of the stitched transmission line with three different stitch angles 85°,65° and 31° were carried out. The results were seen to be consistent up to 2.5, with slight deviations above that, which are mainly as a result of multiple reflections along the line resulting in loss ripples. The DC resistance of the stitched transmission line with three different stitch angles 85°,65° and 31° corresponding to the number of stitches 60,90 and 162 were computed and a mathematical relationship was derived for computing the DC resistance of the stitch transmission line for any given number of stitches. The DC resistance computed results of 25.6Ω,17.3Ω and 13.1Ω, for 31°,65° and 85° stitch angles, indicated an increase in DC resistance of the stitch with decrease in stitch angle which gives rise to an increase in number of stitches. The transfer impedance of the stitched transmission line was also computed at low frequency (<1) to be =(0.24+1.09)Ω, with the result showing the effectiveness of the shield of the stitched transmission line at low frequency (<1

    Development of a composite material with enhanced electromagnetic power dissipation characteristics

    Get PDF
    The present work was undertaken to enhance the productivity of manufacturing operations that involve heating materials by increasing the possibilities for electromagnetic heat processing of materials. The approach taken was to design a composite material with suitable mixture formulae to have prescribed electromagnetic loss characteristics. Investigation began by surveying industrial uses of electro-magnetic energy in heat processing of materials. From applications, the survey shifted to electromagnetic properties of materials with focus upon dielectric properties of materials. Several techniques were considered for altering the dielectric properties of a lossless plastic and the approach chosen was to dilute the base plastic with a lossy particulate. Investigation continued in the area of dielectric properties of mixtures and theoretical calculations of dielectric constant and loss factor were compared for various mixture theories. Dielectric samples were prepared and tested to compare theoretical mixture formulae calculations with experimental results of the dielectric constant and loss factor. Polystyrene was chosen for the base plastic because of its low loss VI characteristics and because it is relatively inexpensive and widely used. Aluminum was chosen for the loading material because of its loss characteristic and because a readily available supply of controlled shape and size existed. Three shapes ( sphere , disc, needle) of aluminum were compounded with the styrene at three (4, 11, 18) percent volume loadings. The mixtures were injection molded into dielectric specimen discs and silver electrodes were applied to the specimen faces. Samples measurements were made with Hewlett-Packard impedance analyzers and a modified General Radio micrometer electrode at discrete frequencies up to 100 MHz. A lumped element circuit model was developed for the fixtures and the fringe capacitance was empirically derived. A control-C program was written to extract dielectric constant and loss factor of the sample from the measured values of impedance. The results were compared with theory and discussed with respect to practical implications and continued work. Temperature rise of the loaded materials was predicted for localized irradiation with long wavelength electromagnetic energy for three filler types
    corecore