532 research outputs found

    Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review

    Get PDF
    The coastal zone offers among the world’s most productive and valuable ecosystems and is experiencing increasing pressure from anthropogenic impacts: human settlements, agriculture, aquaculture, trade, industrial activities, oil and gas exploitation and tourism. Earth observation has great capability to deliver valuable data at the local, regional and global scales and can support the assessment and monitoring of land‐ and water‐related applications in coastal zones. Compared to optical satellites, cloud‐cover does not limit the timeliness of data acquisition with spaceborne Synthetic Aperture Radar (SAR) sensors, which have all‐weather, day and night capabilities. Hence, active radar systems demonstrate great potential for continuous mapping and monitoring of coastal regions, particularly in cloud‐prone tropical and sub‐tropical climates. The canopy penetration capability with long radar wavelength enables L‐band SAR data to be used for coastal terrestrial environments and has been widely applied and investigated for the following geoscientific topics: mapping and monitoring of flooded vegetation and inundated areas; the retrieval of aboveground biomass; and the estimation of soil moisture. Human activities, global population growth, urban sprawl and climate change‐induced impacts are leading to increased pressure on coastal ecosystems causing land degradation, deforestation and land use change. This review presents a comprehensive overview of existing research articles that apply spaceborne L‐band SAR data for geoscientific analyses that are relevant for coastal land applications

    Ocean remote sensing techniques and applications: a review (Part II)

    Get PDF
    As discussed in the first part of this review paper, Remote Sensing (RS) systems are great tools to study various oceanographic parameters. Part I of this study described different passive and active RS systems and six applications of RS in ocean studies, including Ocean Surface Wind (OSW), Ocean Surface Current (OSC), Ocean Wave Height (OWH), Sea Level (SL), Ocean Tide (OT), and Ship Detection (SD). In Part II, the remaining nine important applications of RS systems for ocean environments, including Iceberg, Sea Ice (SI), Sea Surface temperature (SST), Ocean Surface Salinity (OSS), Ocean Color (OC), Ocean Chlorophyll (OCh), Ocean Oil Spill (OOS), Underwater Ocean, and Fishery are comprehensively reviewed and discussed. For each application, the applicable RS systems, their advantages and disadvantages, various RS and Machine Learning (ML) techniques, and several case studies are discussed.Peer ReviewedPostprint (published version

    Review Article: Global Monitoring of Snow Water Equivalent Using High-Frequency Radar Remote Sensing

    Get PDF
    Seasonal snow cover is the largest single component of the cryosphere in areal extent, covering an average of 46 × 106 km2 of Earth\u27s surface (31 % of the land area) each year, and is thus an important expression and driver of the Earth\u27s climate. In recent years, Northern Hemisphere spring snow cover has been declining at about the same rate (∌ −13 % per decade) as Arctic summer sea ice. More than one-sixth of the world\u27s population relies on seasonal snowpack and glaciers for a water supply that is likely to decrease this century. Snow is also a critical component of Earth\u27s cold regions\u27 ecosystems, in which wildlife, vegetation, and snow are strongly interconnected. Snow water equivalent (SWE) describes the quantity of water stored as snow on the land surface and is of fundamental importance to water, energy, and geochemical cycles. Quality global SWE estimates are lacking. Given the vast seasonal extent combined with the spatially variable nature of snow distribution at regional and local scales, surface observations are not able to provide sufficient SWE information. Satellite observations presently cannot provide SWE information at the spatial and temporal resolutions required to address science and high-socio-economic-value applications such as water resource management and streamflow forecasting. In this paper, we review the potential contribution of X- and Ku-band synthetic aperture radar (SAR) for global monitoring of SWE. SAR can image the surface during both day and night regardless of cloud cover, allowing high-frequency revisit at high spatial resolution as demonstrated by missions such as Sentinel-1. The physical basis for estimating SWE from X- and Ku-band radar measurements at local scales is volume scattering by millimeter-scale snow grains. Inference of global snow properties from SAR requires an interdisciplinary approach based on field observations of snow microstructure, physical snow modeling, electromagnetic theory, and retrieval strategies over a range of scales. New field measurement capabilities have enabled significant advances in understanding snow microstructure such as grain size, density, and layering. We describe radar interactions with snow-covered landscapes, the small but rapidly growing number of field datasets used to evaluate retrieval algorithms, the characterization of snowpack properties using radar measurements, and the refinement of retrieval algorithms via synergy with other microwave remote sensing approaches. This review serves to inform the broader snow research, monitoring, and application communities on progress made in recent decades and sets the stage for a new era in SWE remote sensing from SAR measurements

    Surface Soil Moisture Retrievals from Remote Sensing:Current Status, Products & Future Trends

    Get PDF
    Advances in Earth Observation (EO) technology, particularly over the last two decades, have shown that soil moisture content (SMC) can be measured to some degree or other by all regions of the electromagnetic spectrum, and a variety of techniques have been proposed to facilitate this purpose. In this review we provide a synthesis of the efforts made during the last 20 years or so towards the estimation of surface SMC exploiting EO imagery, with a particular emphasis on retrievals from microwave sensors. Rather than replicating previous overview works, we provide a comprehensive and critical exploration of all the major approaches employed for retrieving SMC in a range of different global ecosystems. In this framework, we consider the newest techniques developed within optical and thermal infrared remote sensing, active and passive microwave domains, as well as assimilation or synergistic approaches. Future trends and prospects of EO for the accurate determination of SMC from space are subject to key challenges, some of which are identified and discussed within. It is evident from this review that there is potential for more accurate estimation of SMC exploiting EO technology, particularly so, by exploring the use of synergistic approaches between a variety of EO instruments. Given the importance of SMC in Earth’s land surface interactions and to a large range of applications, one can appreciate that its accurate estimation is critical in addressing key scientific and practical challenges in today’s world such as food security, sustainable planning and management of water resources. The launch of new, more sophisticated satellites strengthens the development of innovative research approaches and scientific inventions that will result in a range of pioneering and ground-breaking advancements in the retrievals of soil moisture from space

    FIREX mission requirements document for renewable resources

    Get PDF
    The initial experimental program and mission requirements for a satellite synthetic aperture radar (SAR) system FIREX (Free-Flying Imaging Radar Experiment) for renewable resources is described. The spacecraft SAR is a C-band and L-band VV polarized system operating at two angles of incidence which is designated as a research instrument for crop identification, crop canopy condition assessments, soil moisture condition estimation, forestry type and condition assessments, snow water equivalent and snow wetness assessments, wetland and coastal land type identification and mapping, flood extent mapping, and assessment of drainage characteristics of watersheds for water resources applications. Specific mission design issues such as the preferred incidence angles for vegetation canopy measurements and the utility of a dual frequency (L and C-band) or dual polarization system as compared to the baseline system are addressed

    Cryosphere Applications

    Get PDF
    Synthetic aperture radar (SAR) provides large coverage and high resolution, and it has been proven to be sensitive to both surface and near-surface features related to accumulation, ablation, and metamorphism of snow and firn. Exploiting this sensitivity, SAR polarimetry and polarimetric interferometry found application to land ice for instance for the estimation of wave extinction (which relates to sub surface ice volume structure) and for the estimation of snow water equivalent (which relates to snow density and depth). After presenting these applications, the Chapter proceeds by reviewing applications of SAR polarimetry to sea ice for the classification of different ice types, the estimation of thickness, and the characterisation of its surface. Finally, an application to the characterisation of permafrost regions is considered. For each application, the used (model-based) decomposition and polarimetric parameters are critically described, and real data results from relevant airborne campaigns and space borne acquisitions are reported

    How to estimate total differential attenuation due to hydrometeors with ground-based multi-frequency radars?

    Get PDF
    Abstract. At millimeter wavelengths, attenuation by hydrometeors, such as liquid droplets or large snowflakes, is generally not negligible. When using multi-frequency ground-based radar measurements, it is common practice to use the Rayleigh targets at cloud top as a reference in order to derive attenuation-corrected reflectivities and meaningful dual-frequency ratios (DFR). By capitalizing on this idea, this study describes a new quality-controlled approach aiming at identifying regions of the cloud where particle growth is negligible. The core of the method is the identification of a Rayleigh plateau, i.e. a large enough region near cloud top where the vertical gradient of DFR remains small. By analyzing collocated Ka-W band radar and microwave radiometer (MWR) observations taken at two European sites under various meteorological conditions, it is shown how the resulting estimates of differential path-integrated attenuation (DeltaPIA) can be used to characterize hydrometeor properties. When the DeltaPIA is predominantly produced by cloud liquid droplets, this technique alone can provide accurate estimates of the liquid water path. When combined with MWR observations, this methodology paves the way towards profiling the cloud liquid water and/or quality flagging the MWR retrieval for rain/drizzle contamination and/or estimating the snow differential attenuation

    Earth resources: A continuing bibliography with indexes (issue 61)

    Get PDF
    This bibliography lists 606 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1 and March 31, 1989. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, oceanography and marine resources, hydrology and water management, data processing and distribution systems, and instrumentation and sensors, and economic analysis

    Investigation of Sea Ice Using Multiple Synthetic Aperture Radar Acquisitions

    Get PDF
    The papers of this thesis are not available in Munin. Paper I: Yitayew, T. G., Ferro-Famil, L., Eltoft, T. & Tebaldini, S. (2017). Tomographic imaging of fjord ice using a very high resolution ground-based SAR system. Available in IEEE Transactions on Geoscience and Remote Sensing, 55 (2):698-714. Paper II: Yitayew, T. G., Ferro-Famil, L., Eltoft, T. & Tebaldini, S. (2017). Lake and fjord ice imaging using a multifrequency ground-based tomographic SAR system. Available in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(10):4457-4468. Paper III: Yitayew, T. G., Divine, D. V., Dierking, W., Eltoft, T., Ferro-Famil, L., Rosel, A. & Negrel, J. Validation of Sea ice Topographic Heights Derived from TanDEMX Interferometric SAR Data with Results from Laser Profiler and Photogrammetry. (Manuscript).The thesis investigates imaging in the vertical direction of different types of ice in the arctic using synthetic aperture radar (SAR) tomography and SAR interferometry. In the first part, the magnitude and the positions of the dominant scattering contributions within snow covered fjord and lake ice layers are effectively identified by using a very high resolution ground-based tomographic SAR system. Datasets collected at multiple frequencies and polarizations over two test sites in TromsĂž area, northern Norway, are used for characterizing the three-dimensional response of snow and ice. The presented experimental results helped to improve our understanding of the interaction between radar waves and snow and ice layers. The reconstructed radar responses are also used for estimating the refractive indices and the vertical positions of the different sub-layers of snow and ice. The second part of the thesis deals with the retrieval of the surface topography of multi-year sea ice using SAR interferometry. Satellite acquisitions from TanDEM-X over the Svalbard area are used for analysis. The retrieved surface height is validated by using overlapping helicopter-based stereo camera and laser profiler measurements, and a very good agreement has been found. The work contributes to an improved understanding regarding the potential of SAR tomography for imaging the vertical scattering distribution of snow and ice layers, and for studying the influence of both sensor parameters such as its frequency and polarization and scene properties such as layer stratification, air bubbles and small-scale roughness of the interfaces on snow and ice backscattered signal. Moreover, the presented results reveal the potential of SAR interferometry for retrieving the surface topography of sea ice
    • 

    corecore