423 research outputs found

    Feasibility of integer knapsacks

    Get PDF
    Given a matrix A∈Zm×nA\in\mathbb{Z}^{m\times n} satisfying certain regularity assumptions, we consider the set F(A)\mathcal{F}(A) of all vectors b∈Zm\boldsymbol{b}\in\mathbb{Z}^m such that the associated knapsack polytope P(A,b)={x∈R≥0n:Ax=b}P(A,\boldsymbol{b})=\{\boldsymbol{x}\in\mathbb{R}^n_{\geq0}:A\boldsymbol{x}=\boldsymbol{b}\} contains an integer point. When m=1m=1 the set F(A)\mathcal{F}(A) is known to contain all consecutive integers greater than the Frobenius number associated with A. In this paper we introduce the diagonal Frobenius number g(A)\mathrm{g}(A) which reflects in an analogous way feasibility properties of the problem and the structure of F(A)\mathcal{F}(A) in the general case. We give an optimal upper bound for g(A)\mathrm{g}(A) and also estimate the asymptotic growth of the diagonal Frobenius number on average. Read More: http://epubs.siam.org/doi/abs/10.1137/09077804

    Lattice based extended formulations for integer linear equality systems

    Get PDF
    We study different extended formulations for the set X={x∈Zn∣Ax=Ax0}X = \{x\in\mathbb{Z}^n \mid Ax = Ax^0\} in order to tackle the feasibility problem for the set X+=X∩Z+nX_+=X \cap \mathbb{Z}^n_+. Here the goal is not to find an improved polyhedral relaxation of conv(X+)(X_+), but rather to reformulate in such a way that the new variables introduced provide good branching directions, and in certain circumstances permit one to deduce rapidly that the instance is infeasible. For the case that AA has one row aa we analyze the reformulations in more detail. In particular, we determine the integer width of the extended formulations in the direction of the last coordinate, and derive a lower bound on the Frobenius number of aa. We also suggest how a decomposition of the vector aa can be obtained that will provide a useful extended formulation. Our theoretical results are accompanied by a small computational study.Comment: uses packages amsmath and amssym

    Integer Knapsacks: Average Behavior of the Frobenius Numbers

    Full text link
    The main result of the paper shows that the asymptotic growth of the Frobenius number in average is significantly slower than the growth of the maximum Frobenius number

    Parametric Polyhedra with at least kk Lattice Points: Their Semigroup Structure and the k-Frobenius Problem

    Full text link
    Given an integral d×nd \times n matrix AA, the well-studied affine semigroup \mbox{ Sg} (A)=\{ b : Ax=b, \ x \in {\mathbb Z}^n, x \geq 0\} can be stratified by the number of lattice points inside the parametric polyhedra PA(b)={x:Ax=b,x≥0}P_A(b)=\{x: Ax=b, x\geq0\}. Such families of parametric polyhedra appear in many areas of combinatorics, convex geometry, algebra and number theory. The key themes of this paper are: (1) A structure theory that characterizes precisely the subset \mbox{ Sg}_{\geq k}(A) of all vectors b \in \mbox{ Sg}(A) such that PA(b)∩ZnP_A(b) \cap {\mathbb Z}^n has at least kk solutions. We demonstrate that this set is finitely generated, it is a union of translated copies of a semigroup which can be computed explicitly via Hilbert bases computations. Related results can be derived for those right-hand-side vectors bb for which PA(b)∩ZnP_A(b) \cap {\mathbb Z}^n has exactly kk solutions or fewer than kk solutions. (2) A computational complexity theory. We show that, when nn, kk are fixed natural numbers, one can compute in polynomial time an encoding of \mbox{ Sg}_{\geq k}(A) as a multivariate generating function, using a short sum of rational functions. As a consequence, one can identify all right-hand-side vectors of bounded norm that have at least kk solutions. (3) Applications and computation for the kk-Frobenius numbers. Using Generating functions we prove that for fixed n,kn,k the kk-Frobenius number can be computed in polynomial time. This generalizes a well-known result for k=1k=1 by R. Kannan. Using some adaptation of dynamic programming we show some practical computations of kk-Frobenius numbers and their relatives

    LLL-reduction for Integer Knapsacks

    Full text link
    Given an integer mxn matrix A satisfying certain regularity assumptions, a well-known integer programming problem asks to find an integer point in the associated knapsack polytope P(A, b)={x: A x= b, x>=0} or determine that no such point exists. We obtain a LLL-based polynomial time algorithm that solves the problem subject to a constraint on the location of the vector b.Comment: improved versio

    A decomposition approach for multidimensional knapsacks with family-split penalties

    Get PDF
    The optimization of Multidimensional Knapsacks with Family-Split Penalties has been introduced in the literature as a variant of the more classical Multidimensional Knapsack and Multi-Knapsack problems. This problem deals with a set of items partitioned in families, and when a single item is picked to maximize the utility, then all items in its family must be picked. Items from the same family can be assigned to different knapsacks, and in this situation split penalties are paid. This problem arises in real applications in various fields. This paper proposes a new exact and fast algorithm based on a specific Combinatorial Benders Cuts scheme. An extensive experimental campaign computationally shows the validity of the proposed method and its superior performance compared to both commercial solvers and state-of-the-art approaches. The paper also addresses algorithmic flexibility and scalability issues, investigates challenging cases, and analyzes the impact of problem parameters on the algorithm behavior. Moreover, it shows the applicability of the proposed approach to a wider class of realistic problems, including fixed costs related to each knapsack utilization. Finally, further possible research directions are considered
    • …
    corecore