107 research outputs found

    On the Edge of Secure Connectivity via Software-Defined Networking

    Get PDF
    Securing communication in computer networks has been an essential feature ever since the Internet, as we know it today, was started. One of the best known and most common methods for secure communication is to use a Virtual Private Network (VPN) solution, mainly operating with an IP security (IPsec) protocol suite originally published in 1995 (RFC1825). It is clear that the Internet, and networks in general, have changed dramatically since then. In particular, the onset of the Cloud and the Internet-of-Things (IoT) have placed new demands on secure networking. Even though the IPsec suite has been updated over the years, it is starting to reach the limits of its capabilities in its present form. Recent advances in networking have thrown up Software-Defined Networking (SDN), which decouples the control and data planes, and thus centralizes the network control. SDN provides arbitrary network topologies and elastic packet forwarding that have enabled useful innovations at the network level. This thesis studies SDN-powered VPN networking and explains the benefits of this combination. Even though the main context is the Cloud, the approaches described here are also valid for non-Cloud operation and are thus suitable for a variety of other use cases for both SMEs and large corporations. In addition to IPsec, open source TLS-based VPN (e.g. OpenVPN) solutions are often used to establish secure tunnels. Research shows that a full-mesh VPN network between multiple sites can be provided using OpenVPN and it can be utilized by SDN to create a seamless, resilient layer-2 overlay for multiple purposes, including the Cloud. However, such a VPN tunnel suffers from resiliency problems and cannot meet the increasing availability requirements. The network setup proposed here is similar to Software-Defined WAN (SD-WAN) solutions and is extremely useful for applications with strict requirements for resiliency and security, even if best-effort ISP is used. IPsec is still preferred over OpenVPN for some use cases, especially by smaller enterprises. Therefore, this research also examines the possibilities for high availability, load balancing, and faster operational speeds for IPsec. We present a novel approach involving the separation of the Internet Key Exchange (IKE) and the Encapsulation Security Payload (ESP) in SDN fashion to operate from separate devices. This allows central management for the IKE while several separate ESP devices can concentrate on the heavy processing. Initially, our research relied on software solutions for ESP processing. Despite the ingenuity of the architectural concept, and although it provided high availability and good load balancing, there was no anti-replay protection. Since anti-replay protection is vital for secure communication, another approach was required. It thus became clear that the ideal solution for such large IPsec tunneling would be to have a pool of fast ESP devices, but to confine the IKE operation to a single centralized device. This would obviate the need for load balancing but still allow high availability via the device pool. The focus of this research thus turned to the study of pure hardware solutions on an FPGA, and their feasibility and production readiness for application in the Cloud context. Our research shows that FPGA works fluently in an SDN network as a standalone IPsec accelerator for ESP packets. The proposed architecture has 10 Gbps throughput, yet the latency is less than 10 µs, meaning that this architecture is especially efficient for data center use and offers increased performance and latency requirements. The high demands of the network packet processing can be met using several different approaches, so this approach is not just limited to the topics presented in this thesis. Global network traffic is growing all the time, so the development of more efficient methods and devices is inevitable. The increasing number of IoT devices will result in a lot of network traffic utilising the Cloud infrastructures in the near future. Based on the latest research, once SDN and hardware acceleration have become fully integrated into the Cloud, the future for secure networking looks promising. SDN technology will open up a wide range of new possibilities for data forwarding, while hardware acceleration will satisfy the increased performance requirements. Although it still remains to be seen whether SDN can answer all the requirements for performance, high availability and resiliency, this thesis shows that it is a very competent technology, even though we have explored only a minor fraction of its capabilities

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2

    Service based virtual RAN architecture for next generation cellular systems

    Get PDF
    Service based architecture (SBA) is a paradigm shift from Service-Oriented Architecture (SOA) to microservices, combining their principles. Network virtualization enables the application of SBA in cellular systems. To better guide the software design of this virtualized cellular system with SBA, this paper presents a software perspective and a positional approach to using fundamental development principles for adapting SBA in virtualized Radio Access Networks (vRANs). First, we present the motivation for using an SBA in cellular radio systems. Then, we explore the critical requirements, key principles, and components for the software to provide radio services in SBA. We also explore the potential of applying SBA-based Radio Access Network (RAN) by comparing the functional split requirements of 5G RAN with existing open-source software and accelerated hardware implementations of service bus, and discuss the limitations of SBA. Finally, we present some discussions, future directions, and a roadmap of applying such a high-level design perspective of SBA to next-generation RAN infrastructure.This work was supported in part by the European Union (EU) H2020 5GROWTH Project under Grant 856709, in part by the Generalitat de Catalunya under Grant 2017 SGR 1195, and in part by the National Program on Equipment and Scientific and Technical Infrastructure under the European Regional Development Fund (FEDER) under Grant EQC2018-005257-P

    A sensor node soC architecture for extremely autonomous wireless sensor networks

    Get PDF
    Tese de Doutoramento em Engenharia Eletrónica e de Computadores (PDEEC) (especialidade em Informática Industrial e Sistemas Embebidos)The Internet of Things (IoT) is revolutionizing the Internet of the future and the way new smart objects and people are being connected into the world. Its pervasive computing and communication technologies connect myriads of smart devices, presented at our everyday things and surrounding objects. Big players in the industry forecast, by 2020, around 50 billion of smart devices connected in a multitude of scenarios and heterogeneous applications, sharing data over a true worldwide network. This will represent a trillion dollar market that everyone wants to take a share. In a world where everything is being connected, device security and device interoperability are a paramount. From the sensor to the cloud, this triggers several technological issues towards connectivity, interoperability and security requirements on IoT devices. However, fulfilling such requirements is not straightforward. While the connectivity exposes the device to the Internet, which also raises several security issues, deploying a standardized communication stack on the endpoint device in the network edge, highly increases the data exchanged over the network. Moreover, handling such ever-growing amount of data on resource-constrained devices, truly affects the performance and the energy consumption. Addressing such issues requires new technological and architectural approaches to help find solutions to leverage an accelerated, secure and energy-aware IoT end-device communication. Throughout this thesis, the developed artifacts triggered the achievement of important findings that demonstrate: (1) how heterogeneous architectures are nowadays a perfect solution to deploy endpoint devices in scenarios where not only (heavy processing) application-specific operations are required, but also network-related capabilities are major concerns; (2) how accelerating network-related tasks result in a more efficient device resources utilization, which combining better performance and increased availability, contributed to an improved overall energy utilization; (3) how device and data security can benefit from modern heterogeneous architectures that rely on secure hardware platforms, which are also able to provide security-related acceleration hardware; (4) how a domain-specific language eases the co-design and customization of a secure and accelerated IoT endpoint device at the network edge.Internet of Things (IoT) é o conceito que está a revolucionar a Internet do futuro e a forma como coisas, processos e pessoas se conectam e se relacionam numa infraestrutura de rede global que interligará, num futuro próximo, um vasto número de dispositivos inteligentes e de utilização diária. Com uma grande aposta no mercado IoT por parte dos grandes líderes na industria, algumas visões otimistas preveem para 2020 mais de 50 mil milhões de dispositivos ligados na periferia da rede, partilhando grandes volumes de dados importantes através da Internet, representando um mercado multimilionário com imensas oportunidades de negócio. Num mundo interligado de dispositivos, a interoperabilidade e a segurança é uma preocupação crescente. Tal preocupação exige inúmeros esforços na exploração de novas soluções, quer a nível tecnológico quer a nível arquitetural, que visem impulsionar o desenvolvimento de dispositivos embebidos com maiores capacidades de desempenho, segurança e eficiência energética, não só apenas do dispositivo em si, mas também das camadas e protocolos de rede associados. Apesar da integração de pilhas de comunicação e de protocolos standard das camadas de rede solucionar problemas associados à conectividade e a interoperabilidade, adiciona a sobrecarga inerente dos protocolos de comunicação e do crescente volume de dados partilhados entre os dispositivos e a Internet, afetando severamente o desempenho e a disponibilidade do mesmo, refletindo-se num maior consumo energético global. As soluções apresentadas nesta tese permitiram obter resultados que demonstram: (1) a viabilidade de soluções heterogéneas no desenvolvimento de dispositivos IoT, onde não só tarefas inerentes à aplicação podem ser aceleradas, mas também tarefas relacionadas com a comunicação do dispositivo; (2) os benefícios da aceleração de tarefas e protocolos da pilha de rede, que se traduz num melhor desempenho do dispositivo e aumento da disponibilidade do mesmo, contribuindo para uma melhor eficiência energética; (3) que plataformas de hardware modernas oferecem mecanismos de segurança que podem ser utilizados não apenas em prol da segurança do dispositivo, mas também nas capacidades de comunicação do mesmo; (4) que o desenvolvimento de uma linguagem de domínio específico permite de forma mais eficaz e eficiente o desenvolvimento e configuração de dispositivos IoT inteligentes.This thesis was supported by a PhD scholarship from Fundação para a Ciência e Tecnologia, SFRH/BD/90162/201

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Advancing SDN from OpenFlow to P4: a survey

    Get PDF
    Software-defined Networking (SDN) marked the beginning of a new era in the field of networking by decoupling the control and forwarding processes through the OpenFlow protocol. The Next Generation SDN is defined by Open Interfaces and full programmability of the data plane. P4 is a domain-specific language that fulfills these requirements and has known wide adoption over recent years from Academia and Industry. This work is an extensive survey of the P4 language covering domains of application, a detailed overview of the language, and future directions

    Feasibility Study of High-Level Synthesis : Implementation of a Real-Time HEVC Intra Encoder on FPGA

    Get PDF
    High-Level Synthesis (HLS) on automatisoitu suunnitteluprosessi, joka pyrkii parantamaan tuottavuutta perinteisiin suunnittelumenetelmiin verrattuna, nostamalla suunnittelun abstraktiota rekisterisiirtotasolta (RTL) käyttäytymistasolle. Erilaisia kaupallisia HLS-työkaluja on ollut markkinoilla aina 1990-luvulta lähtien, mutta vasta äskettäin ne ovat alkaneet saada hyväksyntää teollisuudessa sekä akateemisessa maailmassa. Hidas käyttöönottoaste on johtunut pääasiassa huonommasta tulosten laadusta (QoR) kuin mitä on ollut mahdollista tavanomaisilla laitteistokuvauskielillä (HDL). Uusimmat HLS-työkalusukupolvet ovat kuitenkin kaventaneet QoR-aukkoa huomattavasti. Tämä väitöskirja tutkii HLS:n soveltuvuutta videokoodekkien kehittämiseen. Se esittelee useita HLS-toteutuksia High Efficiency Video Coding (HEVC) -koodaukselle, joka on keskeinen mahdollistava tekniikka lukuisille nykyaikaisille mediasovelluksille. HEVC kaksinkertaistaa koodaustehokkuuden edeltäjäänsä Advanced Video Coding (AVC) -standardiin verrattuna, saavuttaen silti saman subjektiivisen visuaalisen laadun. Tämä tyypillisesti saavutetaan huomattavalla laskennallisella lisäkustannuksella. Siksi reaaliaikainen HEVC vaatii automatisoituja suunnittelumenetelmiä, joita voidaan käyttää rautatoteutus- (HW ) ja varmennustyön minimoimiseen. Tässä väitöskirjassa ehdotetaan HLS:n käyttöä koko enkooderin suunnitteluprosessissa. Dataintensiivisistä koodaustyökaluista, kuten intra-ennustus ja diskreetit muunnokset, myös enemmän kontrollia vaativiin kokonaisuuksiin, kuten entropiakoodaukseen. Avoimen lähdekoodin Kvazaar HEVC -enkooderin C-lähdekoodia hyödynnetään tässä työssä referenssinä HLS-suunnittelulle sekä toteutuksen varmentamisessa. Suorituskykytulokset saadaan ja raportoidaan ohjelmoitavalla porttimatriisilla (FPGA). Tämän väitöskirjan tärkein tuotos on HEVC intra enkooderin prototyyppi. Prototyyppi koostuu Nokia AirFrame Cloud Server palvelimesta, varustettuna kahdella 2.4 GHz:n 14-ytiminen Intel Xeon prosessorilla, sekä kahdesta Intel Arria 10 GX FPGA kiihdytinkortista, jotka voidaan kytkeä serveriin käyttäen joko peripheral component interconnect express (PCIe) liitäntää tai 40 gigabitin Ethernettiä. Prototyyppijärjestelmä saavuttaa reaaliaikaisen 4K enkoodausnopeuden, jopa 120 kuvaa sekunnissa. Lisäksi järjestelmän suorituskykyä on helppo skaalata paremmaksi lisäämällä järjestelmään käytännössä minkä tahansa määrän verkkoon kytkettäviä FPGA-kortteja. Monimutkaisen HEVC:n tehokas mallinnus ja sen monipuolisten ominaisuuksien mukauttaminen reaaliaikaiselle HW HEVC enkooderille ei ole triviaali tehtävä, koska HW-toteutukset ovat perinteisesti erittäin aikaa vieviä. Tämä väitöskirja osoittaa, että HLS:n avulla pystytään nopeuttamaan kehitysaikaa, tarjoamaan ennen näkemätöntä suunnittelun skaalautuvuutta, ja silti osoittamaan kilpailukykyisiä QoR-arvoja ja absoluuttista suorituskykyä verrattuna olemassa oleviin toteutuksiin.High-Level Synthesis (HLS) is an automated design process that seeks to improve productivity over traditional design methods by increasing design abstraction from register transfer level (RTL) to behavioural level. Various commercial HLS tools have been available on the market since the 1990s, but only recently they have started to gain adoption across industry and academia. The slow adoption rate has mainly stemmed from lower quality of results (QoR) than obtained with conventional hardware description languages (HDLs). However, the latest HLS tool generations have substantially narrowed the QoR gap. This thesis studies the feasibility of HLS in video codec development. It introduces several HLS implementations for High Efficiency Video Coding (HEVC) , that is the key enabling technology for numerous modern media applications. HEVC doubles the coding efficiency over its predecessor Advanced Video Coding (AVC) standard for the same subjective visual quality, but typically at the cost of considerably higher computational complexity. Therefore, real-time HEVC calls for automated design methodologies that can be used to minimize the HW implementation and verification effort. This thesis proposes to use HLS throughout the whole encoder design process. From data-intensive coding tools, like intra prediction and discrete transforms, to more control-oriented tools, such as entropy coding. The C source code of the open-source Kvazaar HEVC encoder serves as a design entry point for the HLS flow, and it is also utilized in design verification. The performance results are gathered with and reported for field programmable gate array (FPGA) . The main contribution of this thesis is an HEVC intra encoder prototype that is built on a Nokia AirFrame Cloud Server equipped with 2.4 GHz dual 14-core Intel Xeon processors and two Intel Arria 10 GX FPGA Development Kits, that can be connected to the server via peripheral component interconnect express (PCIe) generation 3 or 40 Gigabit Ethernet. The proof-of-concept system achieves real-time. 4K coding speed up to 120 fps, which can be further scaled up by adding practically any number of network-connected FPGA cards. Overcoming the complexity of HEVC and customizing its rich features for a real-time HEVC encoder implementation on hardware is not a trivial task, as hardware development has traditionally turned out to be very time-consuming. This thesis shows that HLS is able to boost the development time, provide previously unseen design scalability, and still result in competitive performance and QoR over state-of-the-art hardware implementations

    On the Energy Efficiency of Networked Systems

    Get PDF
    Energy is a first-class resource for datacenter operators since its cost is the biggest limiting factor in scaling a large computing facility. The solution embraced by major operators is to build their facilities in strategic geographical locations and to abandon expensive specialized hardware for cheap commodity systems. However, such systems are not efficient when it comes to energy and a considerable amount of research effort has been put in finding a solution to this problem. Furthermore, the need for more programmable and flexible networking devices is pushing the need for hardware commoditization also within the datacenter network. In this thesis we propose two solutions aimed at improving the overall energy efficiency of a datacenter facility. The first address efficiency in computing, by proposing a different hardware architecture for server systems. We propose a hybrid architecture that blends traditional server processors with very-low-power processors from the mobile devices world. The second solution envisions the usage of current server platforms as network switches or routers and provides guidelines for the implementation of power saving algorithms that do not affect peak performance while saving up to 50% power. This work is based on both theoretical modeling and simulation and experimentation with real-world prototypes
    corecore