3,814 research outputs found

    Recent advances in 3D printing of biomaterials.

    Get PDF
    3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fueled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. In this review, the major materials and technology advances within the last five years for each of the common 3D Printing technologies (Three Dimensional Printing, Fused Deposition Modeling, Selective Laser Sintering, Stereolithography, and 3D Plotting/Direct-Write/Bioprinting) are described. Examples are highlighted to illustrate progress of each technology in tissue engineering, and key limitations are identified to motivate future research and advance this fascinating field of advanced manufacturing

    Modeling of acetosolv pulping of oil palm fronds using response surface methodology and wavelet neural networks

    Get PDF
    Mathematical models based on response surface methodology (RSM) and wavelet neural networks (WNNs) in conjunction with a central composite design were developed in order to study the influence of pulping variables viz. acetic acid, temperature, time, and hydrochloric acid (catalyst) on the resulting pulp and paper properties (screened yield, kappa number, tensile and tear indices) during the acetosolv pulping of oil palm fronds. The performance analysis demonstrated the superiority of WNNs over RSM, in that the former reproduced the experimental results with percentage errors and mean squared errors between 3 and 8% and 0.0054–0.4514 respectively, which were much lower than those obtained by the RSM models with corresponding values of 12–40% and 0.0809–9.3044, further corroborating the goodness of fit of the WNNs models for simulating the acetosolv pulping of oil palm fronds. Based on this assessment, it validates the exceptional predictive ability of the WNNs in comparison to the RSM polynomial model

    Additively manufacturable micro-mechanical logic gates.

    Get PDF
    Early examples of computers were almost exclusively based on mechanical devices. Although electronic computers became dominant in the past 60 years, recent advancements in three-dimensional micro-additive manufacturing technology provide new fabrication techniques for complex microstructures which have rekindled research interest in mechanical computations. Here we propose a new digital mechanical computation approach based on additively-manufacturable micro-mechanical logic gates. The proposed mechanical logic gates (i.e., NOT, AND, OR, NAND, and NOR gates) utilize multi-stable micro-flexures that buckle to perform Boolean computations based purely on mechanical forces and displacements with no electronic components. A key benefit of the proposed approach is that such systems can be additively fabricated as embedded parts of microarchitected metamaterials that are capable of interacting mechanically with their surrounding environment while processing and storing digital data internally without requiring electric power
    • …
    corecore