217 research outputs found

    Monitorización de infraestructuras críticas expuestas a riesgos naturales y antrópicos mediante interferometría radar de satélite

    Full text link
    [EN] Synthetic Aperture Radar Interferometry (InSAR) is a remote sensing technique very effective for the measure of smalldisplacements of the Earth’s surface over large areas at a very low cost as compared with conventional geodetictechniques. Advanced InSAR time series algorithms for monitoring and investigating surface displacement on Earth arebased on conventional radar interferometry. These techniques allow us to measure deformation with uncertainties of 1mm/year, interpreting time series of interferometric phases at coherent point scatterers (PS) without the need for humanor special equipment presence on the site. By applying InSAR processing techniques to a series of radar images over thesame region, it is possible to detect line-of-sight (LOS) displacements of infrastructures on the ground and therefore identifyabnormal or excessive movement indicating potential problems requiring detailed ground investigation. A major advantageof this technology is that a single radar image can cover a major area of up to 100 km by 100 km or more as, for example,Sentinel-1 C-band satellites data cover a 250 km wide swath. Therefore, all engineering infrastructures in the area, suchas dams, dikes, bridges, ports, etc. subject to terrain deformation by volcanos, landslides, subsidence due to groundwater,gas, or oil withdrawal could be monitored, reducing operating costs effectively. In this sense, the free and open accessCopernicus Sentinel-1 data with currently up to 6-days revisit time open new opportunities for a near real-time landmonitoring. In addition, the new generation of high-resolution radar imagery acquired by SAR sensors such as TerraSARX,COSMO-SkyMed, and PAZ, and the development of multi-interferogram techniques has enhanced our capabilities inrecent years in using InSAR as deformation monitoring tool. In this paper, we address the applicability of using spaceborneSAR sensors for monitoring infrastructures in geomatics engineering and present several cases studies carried out by ourgroup related to anthropogenic and natural hazards, as well as monitoring of critical infrastructures.[ES] La interferometría radar de apertura sintética (InSAR) es una técnica de teledetección muy eficaz para medir pequeños desplazamientos de la superficie terrestre en grandes áreas a un coste muy pequeño en comparación con las técnicas geodésicas convencionales. Los algoritmos avanzados de series temporales InSAR para monitorizar e investigar el desplazamiento de la superficie terrestre se basan en la interferometría radar convencional. Estas técnicas nos permiten medir la deformación con incertidumbres de un milímetro por año, interpretando series temporales de fases interferométricas en retrodispersores puntuales coherentes (PS) sin necesidad de presencia humana o de equipos especiales en el sitio. Al aplicar técnicas de procesamiento InSAR a una serie de imágenes radar de la misma región, es posible detectar desplazamientos de infraestructuras proyectados en la línea de vista del satélite (line-of-sight o LOS) y, por lo tanto, identificar movimientos anormales o excesivos que indiquen problemas potenciales que requieran una investigación detallada del terreno. Una de las principales ventajas de esta tecnología es que una sola imagen radar puede cubrir un área importante de hasta 100 km por 100 km o más, ya que, por ejemplo, los datos de los satélites de banda C Sentinel-1 cubren una franja de 250 km de ancho. Por lo tanto, todas las infraestructuras civiles de la zona, como presas, diques, puentes, puertos, etc., sujetas a deformaciones del terreno por actividad volcánica, deslizamientos de tierra, hundimientos por extracción de agua subterránea, gas o petróleo, podrían ser monitorizados, reduciendo los costes operativos de manera efectiva. En este sentido, los datos Sentinel-1 de Copernicus, de acceso abierto, con hasta 6 días de tiempo de revisión actual abren nuevas oportunidades para una monitorización terrestre casi en tiempo real. Además, la nueva generación de imágenes radar de alta resolución adquiridas por sensores SAR como TerraSAR-X, COSMOSkyMed y PAZ, y el desarrollo de técnicas multi-interferograma ha mejorado nuestras capacidades en los últimos años en el uso del InSAR como herramienta para el control de deformaciones. En este trabajo se aborda la aplicabilidad del uso de sensores SAR espaciales para la monitorización de infraestructuras civiles en ingeniería geomática y presentamos varios casos de estudio realizados por nuestro grupo relacionados con riesgos naturales y antrópicos, así como de monitorización de infraestructura crítica.ERS-1/2 and Envisat datasets were provided by the European Space Agency (ESA). Sentinel-1A/B data were freely provided by ESA through Copernicus Programme. Data have been processed by DORIS (TUDelft), StaMPS (Andy Hooper), SARPROZ (Copyright (c) 2009-2020 Daniele Perissin), and SNAP (ESA). The satellite orbits are from TUDelft and ESA, as well as from the ESA Quality Control Group of Sentinel-1. Research was supported by [ESA Research and Service Support] for providing hardware resources employed in this work; [Spanish Ministry of Economy, Industry and Competitiveness] under ReMoDams project ESP2017-89344-R (AEI/FEDER, UE); [University of Jaén (Spain)] under PAIUJA-2021/2022 and CEACTEMA; [Junta de Andalucía (Spain)] under RNM-282 research group; [ERDF through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme] within project «POCI-01-0145-FEDER006961»; [National Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology)] as part of project UID/EEA/50014/2013; [The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPU II)] under project «IT4Innovations excellence in science - LQ1602» (Czech Republic); and [Slovak Grant Agency VEGA] under projects No. 2/0100/20Ruiz-Armenteros, A.; Delgado-Blasco, J.; Bakon, M.; Lazecky, M.; Marchamalo-Sacristán, M.; Lamas-Fernández, F.; Ruiz-Constán, A.... (2021). Monitoring critical infrastructure exposed to anthropogenic and natural hazards using satellite radar interferometry. En Proceedings 3rd Congress in Geomatics Engineering. Editorial Universitat Politècnica de València. 137-146. https://doi.org/10.4995/CiGeo2021.2021.12736OCS13714

    시계열 InSAR 기법을 사용하여 비정상적 해수면 상승 기록을 보인 조위관측소의 수직지반변위 평가

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 자연과학대학 지구환경과학부, 2021.8. 김덕진.Global sea level rise has been a serious threat to the low-lying coasts and islands around the world. It is important to understand the global and regional sea level changes for preventing the coastal zones. Tide gauges are installed around the world, which directly measures the change in sea level relative to the local datum. Sea level in the past three decades has risen to 1.8 mm/year compared to the sea level rise in the 20th century (3.35 mm/year), estimated by the Intergovernmental Panel on Climate Change (IPCC). However, along with the contributors of sea level rise, vertical land motion (VLM) is indeed an essential component for understanding the regional sea level change; however, its contribution remains still unclear. The VLM is referred to as change in elevation of land at tide gauge due to the regional and local processes by both natural and anthropogenic activities can deteriorate the sea level records and lead to spurious sea level acceleration. Assessing the vertical land motion at tide gauges with the accuracy of sub-millimeters is essential to reconstruct the global and regional sea level rise. Previous studies attempt to observe the vertical land movements at sparse locations through Global Positioning System (GPS). However, the VLM observed from the sparse GPS network makes the estimation uncertain. In this study, an alternative approach is proposed in this study to directly measure the relative vertical land motion including spatial and temporal variations through Synthetic Aperture Radar (SAR) data by using time-series SAR interferometric (InSAR) techniques. This work presents a contribution enhancing the estimation of VLM rates with high spatial resolution over large area using time-series InSAR analysis. First, the C-band Interferometric Wide-swath (IW) mode SAR data from the Sentinel-1 A/B satellite was used in this study to estimate the VLM rates of tide gauges. The Sentinel-1 A/B SAR data were obtained during the period between 2014/10 and 2020/12 (~ 6 years). Stanford Method for Persistent Scatterers – Persistent Scatterer Interferometry (StaMPS-PSI) time-series InSAR algorithm was initially applied to the case study: Pohang tide gauge in the Korean peninsula for monitoring the stability of tide gauge station and its VLM rates during 2014 ~ 2017. For the Pohang tide gauge site, SAR data acquired in both ascending and descending passes and derived the ground movement rates at tide gauge along the line-of-sight direction. The vertical movements from the collocated POHA GPS station were compared with the InSAR derived VLM rates for determining the correlation between the two methods. The VLM rates at the Pohang tide gauge site were -25.5 mm/year during 2014 ~ 2017. This VLM rate at Pohang tide gauge derived by StaMPS-PSI estimates were from the strong dominant scatterers along the coastal regions. Second, for the terrains, with few dominant scatterers and more distributed scatters, a short temporal InSAR pair selection approach was introduced, referred as Sequential StaMPS-Small baselines subset (StaMPS-SBAS) was proposed in this study. Sequential StaMPS-SBAS forms the interferograms of short temporal sequential order (n = 5) to increase the initial pixel candidates on the natural terrains in the vicinity of tide gauges. Sentinel-1 A/B SAR data over ten tide gauges in the Korean peninsula having different terrain conditions were acquired during 2014 ~ 2020; and employed with sequential StaMPS-SBAS to estimate the VLM rates and time-series displacements. The initial pixel density has been doubled and ~ 1.25 times the final coherent pixels identified over the conventional StaMPS-SBAS analysis. Third, the potential for the fully automatic estimation of time-series VLM rates by sequential StaMPS-SBAS analysis was investigated. A fully automatic processing module referred to as ‘Seq-TInSAR’, was developed which has three modules 1) automatically downloads Sentinel-1 Single look complex (SLC) data, precise orbit files, and Digital Elevation Model (DEM); 2) SLC pre-processor: extract bursts, fine Coregistration and stacking and, 3) Sequential StaMPS-SBAS processor: estimates the VLM rates and VLM time-series. Finally, the Seq-TInSAR module is applied to the 100 tide gauges that exhibit abnormal sea level trend with par global mean sea level average. For each tide gauge site, 60 ~ 70 Sentinel-1 A/B SLC scenes were acquired and 300 ~ 350 sequential interferograms were processed to estimate the VLM at tide gauge stations. The final quantitative VLM rates and time-series VLM are estimated for the selected tide gauges stations. Based on the VLM rates, the tide gauges investigated in this study are categorized into different VLM ranges. The in-situ GPS observations available at 12 tide gauge stations were compared with InSAR VLM rates and found strong agreement, which suggests the proposed approach more reliable in measuring the spatial and temporal variations of VLM at tide gauges.전 세계적으로 발생하는 해수면 상승은 저지대 해안과 도서 지역에 심각한 위협으로 작용한다. 해안 지역을 보호하기 위해 전 지구 및 해당 지역의 해수면 변화를 이해하는 것은 대단히 중요하다. 조위 관측소는 전 세계에 설치되어 해당 지역 기준에 따른 해수면 변화를 직접 측정한다. 지난 30 년간 해수면은 IPCC (정부 간 기후 변화 패널)가 추정한 20 세기의 해수면 상승 (3.35mm / 년)대비 1.8mm / 년 가까이 상승하였다. 그러나 해수면 상승의 원인과 함께 연직 지반 운동 (VLM)은 지역 해수면 변화를 이해하는 데 필수적인 요소이지만 그 기여도는 여전히 불분명하다. VLM은 자연 활동과 인간 활동 모두에 의한 지역적 변화로 인해 조위 관측소에서 지반의 고도 변화로 정의되며 해수면 변화 정확도을 악화시키고 유사 해수면 변화의 가속을 초래할 수 있다. 전 세계 및 지역 해수면 상승을 재구성하려면 1 밀리미터 미만의 정확도로 조위 관측소에서 VLM을 평가하는 것이 필수적이다. 이전 연구는 GPS (Global Positioning System)를 통해 제한된 위치에서 VLM 을 관측하려고 시도하였으나 국소적인 GPS 신호들로부터 관측된 VLM으로는 그 추정이 불확실하다. 본 연구에서는 시계열 SAR 간섭계 (InSAR) 기법을 이용하여 SAR (Synthetic Aperture Radar) 데이터를 통해 공간적, 시간적 변화를 포함한 상대적 VLM을 직접 측정하기 위한 대안적 접근 방식을 제안한다. 이 작업은 시계열 InSAR 분석을 사용하여 광대역에 걸쳐 높은 공간 해상도로 VLM 속도의 추정을 향상시키는 데 기여한다. 첫째로, Sentinel-1 A / B 위성의 C-band Interferometric Wide-swath (IW) 모드 SAR 영상이 본 연구에서 조위 관측소의 VLM 속도를 추정하는 데 사용되었다. Sentinel-1 A / B SAR 영상은 2014 년 10 월부터 2020 년 12 월까지 (~ 6 년) 기간 동안 수집되었다. 고정 산란체를 위한 스탠포드 기법 – 고정 산란 간섭계 (StaMPS-PSI) 시계열 InSAR 알고리즘이 한반도 포항 조위 관측소의 2014 ~ 2017 년 동안의 조위 관측소의 안정성과 VLM 속도를 모니터링하기 위해 적용되었다. 포항 조위 관측소 부지의 경우, 위성궤도의 상승 및 하강 경로로 획득한 SAR 영상을 통해 시선 방향을 따라 조위 관측소에서의 지면 이동 속도를 도출하였다. 포항 GPS 관측소의 연직 이동은 두 기법 간의 상관성를 판단하기 위해 InSAR기법으로부터 추정된 VLM 속도와 비교되었다. 포항 조위 관측소의 VLM 속도는 2014 ~ 2017 년의 기간 동안 -25.5mm / 년으로 관측되었다. StaMPS-PSI 추정에 의해 도출 된 포항 조위 관측소의 VLM 속도은 해안 지역의 강한 산란 체에서 기인한다. 둘째로, 강한 산란체가 수가 적고 분산된 산란체가 더 많은 지형의 경우, 본 연구에서 Sequential StaMPS-Small baselines (StaMPS-SBAS)이라는 하는 단기 InSAR 쌍의 선택에 의한 접근 방식이 제안되었다. Sequential StaMPS-SBAS는 짧은 시간 범위(n = 5)의 간섭계 영상을 형성하여 조위 관측소 부근의 자연 지형에서 변화가 적은 화소 선택을 증가시킨다. Sentinel-1 A / B SAR 영상은 2014 년 ~ 2020 년 사이에 서로 다른 지형 조건을 가진 한반도의 10 개 조위 관측소에서 수집되었으며, VLM 속도 및 시계열 변위를 추정하기 위해 Sequential StaMPS-SBAS와 함께 사용되었다. 초기 화소 밀도는 기존 StaMPS-SBAS 분석을 통해 확인 된 최종적인 불변화소 밀도의 약 1.25 배와 두 배로 도출되었다. 셋째로, Sequential StaMPS-SBAS 분석에 의한 시계열 VLM 비율의 완전한 자동 추정 가능성을 조사하였다. Seq-TInSAR라고하는 완전한 자동 처리 모듈이 개발되었으며, 3 개의 하위 모듈로 구성되어있다. 1) Sentinel-1 SLC (Single Look Complex) 영상, 정밀한 궤도 정보 및 DEM (Digital Elevation Model)의 자동 다운로드 2) SLC 전 처리기 : 영상 별 Burst 추출, 정밀한 통합 및 Stacking, 3) Sequential StaMPS-SBAS 프로세서 : VLM 속도 및 VLM 시계열 변위의 추정 마지막으로, Seq-TInSAR 모듈은 동위 평균 해수면 평균으로 비정상적인 해수면 추세를 보이는 100 개의 조위 관측소에 적용된다. 조위 관측소 지점별로 60 ~ 70 개의 Sentinel-1 A / B SLC 영상을 획득하고 300 ~ 350 개의 시계열 간섭계 영상을 처리하여 조위 관측소에서 VLM을 추정하였다. 정량적인 VLM 속도와 시계열 VLM은 선정한 조위 관측소에 대해 추정하였다. VLM 속도을 기반으로 본 연구에서 도출한 조위 관측소는 다양한 VLM 범위로 분류된다. 12 개의 조위 관측소에서 취득한 현장 GPS 관측 자료를 InSAR로부터 추정한 VLM 비율과 비교하여 강력한 상관성을 찾았고, 이는 본 연구에서 제안한 접근 방식이 조위 관측소에서 VLM의 공간적 및 시간적 변화를 측정하는데 신뢰할 수 있는 자료로 사용될 수 있음을 시사한다.Chapter 1. Introduction 1 1.1. Brief overview of sea-level rise 1 1.2. Motivations 4 1.3. Purpose of Research 9 1.4. Outline 12 Chapter 2. Sea Level variations and Estimation of Vertical land motion 14 2.1. Sea level variations 14 2.2. Sea level observations 14 2.3. Long term sea level estimation 19 2.4. Factors contributing tide gauge records: Vertical Land Motion 19 2.5. Brief overview of InSAR and Time-series SAR Interferometry 24 Chapter 3. Vertical Land Motion estimation at Tide gauge using Time-series PS-InSAR technique: A case study for Pohang tide gauge 36 3.1. Background 36 3.2. VLM estimation at Pohang tide gauge using StaMPS-PSI analysis 38 3.3. Development of StaMPS-SBAS InSAR using Sequential InSAR pair selection suitable for coastal environments 55 3.4. Discussion 80 Chapter 4. Application of time-series Sequential-SBAS InSAR for Vertical Land Motion estimation at selected tide gauges around the world using Sentinel-1 SAR data 85 4.1. Description of PSMSL tide gauge data 87 4.2. Sentinel-1 A/B SAR data acquisitions 92 4.3. Automatic Time-series InSAR processing module ”Seq-TInSAR” 93 4.4. Results: Estimation of vertical land motions at selected tide gauges 97 4.5. Comparison of InSAR results with GNSS observations 112 4.6. Discussion 125 Chapter 5. Conclusions and Future Perspectives 128 Abstract in Korean 133 Appendix – A 136 Appendix – B 146 Bibliography 151박

    Land Cover Classification using Sentinel-1 Radar Mission Interferometry

    Get PDF
    Synthetic Aperture Radar (SAR) has been widely used for many years in the field of remote sensing. SAR has valuable contribution due to its ability to provide complementary information to optical systems, penetration of radar waves through volumetric targets and high-resolution. SAR has the ability to operate during day and night. It provides operational services under all weather conditions. SAR imagery has many applications including land cover changes, environmental monitoring, climate change and military surveillance. This work focuses on land cover classification with SAR interferometry (InSAR) technique using Sentinel-1 space radar image pair. Sentinel-1 data were collected over the southern part of Estonia. Two SLC SAR images were acquired from both Sentinel-1A and Sentinel-1B with six days temporal difference. In this study, interferometric coherence and backscattering intensity processing chains have been set up and applied to Sentinel-1 SAR image pair. The Sentinel Application Platform (SNAP) has been used for processing of single pair for Sentinel-1 mission. The SNAP is an European Space Agency (ESA) software. The Sentinel-1 image pair processing has been done using Sentinel-1 Toolbox (S1TBX) which is a part of SNAP. Corine Land Cover (CLC) 2012 database has been used as a reference data with 20 m resolution. The CLC2012 contains land use/cover information for most of the European countries. A single optical image from Sentinel-2A was additionally used for feature extraction. An overall accuracy of 68% to 73% was achieved when performing classification into five classes (Urban, Field, Forest, Peat-land, Water) using supervised classification with k-nearest neighbour (kNN) algorithm. The accuracy assessment was done by using confusion matrices

    Estimating instantaneous sea-ice dynamics from space using the bi-static radar measurements of Earth Explorer 10 candidate Harmony

    Get PDF
    This article describes the observation techniques and suggests processing methods to estimate dynamical sea-ice parameters from data of the Earth Explorer 10 candidate Harmony. The two Harmony satellites will fly in a reconfigurable formation with Sentinel-1D. Both will be equipped with a multi-angle thermal infrared sensor and a passive radar receiver, which receives the reflected Sentinel-1D signals using two antennas. During the lifetime of the mission, two different formations will be flown. In the stereo formation, the Harmony satellites will fly approximately 300 km in front and behind Sentinel-1, which allows for the estimation of instantaneous sea-ice drift vectors. We demonstrate that the addition of instantaneous sea-ice drift estimates on top of the daily integrated values from feature tracking have benefits in terms of interpretation, sampling and resolution. The wide-swath instantaneous drift observations of Harmony also help to put high-temporal-resolution instantaneous buoy observations into a spatial context. Additionally, it allows for the extraction of deformation parameters, such as shear and divergence. As a result, Harmony's data will help to improve sea-ice statistics and parametrizations to constrain sea-ice models. In the cross-track interferometry (XTI) mode, Harmony's satellites will fly in close formation with an XTI baseline to be able to estimate surface elevations. This will allow for improved estimates of sea-ice volume and also enables the retrieval of full, two-dimensional swell-wave spectra in sea-ice-covered regions without any gaps. In stereo formation, the line-of-sight diversity allows the inference of swell properties in both directions using traditional velocity bunching approaches. In XTI mode, Harmony's phase differences are only sensitive to the ground-range direction swell. To fully recover two-dimensional swell-wave spectra, a synergy between XTI height spectra and intensity spectra is required. If selected, the Harmony mission will be launched in 2028

    Sentinel-1 azimuth subbanding for multiple aperture interferometry - Test case over the Roi Baudoin ice shelf, east Antartica

    Full text link
    peer reviewedAs an extension of Synthetic Aperture Radar Interferom- etry, Multiple Aperture Interferometry (MAI) is a spectral diversity technique that allows the determination of azimuth displace- ments from phase shift measurements. This is made possi- ble through the creation of backward- and forward-looking Single-Look-Complex (SLC) data. Then, the phase differ- ence between the backward and forward-looking interfero- gram is translated into a displacement. Using SLC data, MAI requires a proper azimuth splitband operator. Different tech- niques exist to split the azimuth band, but they are often too briefly described in the MAI literature. In this conference pa- per, we analyze the signal properties of the Sentinel-1 TOPS acquisition mode and define an azimuth subbanding proto- col. In particular, we look at the role of de-apodization and apodization in the band filtering operation. We focus our anal- ysis on Sentinel-1 data in Interferometric Wideswath mode over the Roi Baudouin Ice Shelf, East Antarctica.MIMO (Monitoring melt where Ice Meets Ocean); SMAIAD (Sentinel-1 Multiple Aperture Interferometry for Azimuth Displacement Retrieval
    corecore