352 research outputs found

    Integrating Job Parallelism in Real-Time Scheduling Theory

    Get PDF
    We investigate the global scheduling of sporadic, implicit deadline, real-time task systems on multiprocessor platforms. We provide a task model which integrates job parallelism. We prove that the time-complexity of the feasibility problem of these systems is linear relatively to the number of (sporadic) tasks for a fixed number of processors. We propose a scheduling algorithm theoretically optimal (i.e., preemptions and migrations neglected). Moreover, we provide an exact feasibility utilization bound. Lastly, we propose a technique to limit the number of migrations and preemptions

    Restart-Based Fault-Tolerance: System Design and Schedulability Analysis

    Full text link
    Embedded systems in safety-critical environments are continuously required to deliver more performance and functionality, while expected to provide verified safety guarantees. Nonetheless, platform-wide software verification (required for safety) is often expensive. Therefore, design methods that enable utilization of components such as real-time operating systems (RTOS), without requiring their correctness to guarantee safety, is necessary. In this paper, we propose a design approach to deploy safe-by-design embedded systems. To attain this goal, we rely on a small core of verified software to handle faults in applications and RTOS and recover from them while ensuring that timing constraints of safety-critical tasks are always satisfied. Faults are detected by monitoring the application timing and fault-recovery is achieved via full platform restart and software reload, enabled by the short restart time of embedded systems. Schedulability analysis is used to ensure that the timing constraints of critical plant control tasks are always satisfied in spite of faults and consequent restarts. We derive schedulability results for four restart-tolerant task models. We use a simulator to evaluate and compare the performance of the considered scheduling models

    Limited Preemptive Scheduling for Real-Time Systems: a Survey

    Get PDF
    The question whether preemptive algorithms are better than nonpreemptive ones for scheduling a set of real-time tasks has been debated for a long time in the research community. In fact, especially under fixed priority systems, each approach has advantages and disadvantages, and no one dominates the other when both predictability and efficiency have to be taken into account in the system design. Recently, limited preemption models have been proposed as a viable alternative between the two extreme cases of fully preemptive and nonpreemptive scheduling. This paper presents a survey of the existing approaches for reducing preemptions and compares them under different metrics, providing both qualitative and quantitative performance evaluations

    Rate Monotonic vs. EDF: Judgment Day

    Get PDF
    Since the first results published in 1973 by Liu and Layland on the Rate Monotonic (RM) and Earliest Deadline First (EDF) algorithms, a lot of progress has been made in the schedulability analysis of periodic task sets. Unfortunately, many misconceptions still exist about the properties of these two scheduling methods, which usually tend to favor RMmore than EDF. Typical wrong statements often heard in technical conferences and even in research papers claim that RM is easier to analyze than EDF, it introduces less runtime overhead, it is more predictable in overload conditions, and causes less jitter in task execution. Since the above statements are either wrong, or not precise, it is time to clarify these issues in a systematic fashion, because the use of EDF allows a better exploitation of the available resources and significantly improves system’s performance. This paper comparesRMagainstEDFunder several aspects, using existing theoretical results, specific simulation experiments, or simple counterexamples to show that many common beliefs are either false or only restricted to specific situations

    The Optimality of PFPasap Algorithm for Fixed-Priority Energy-Harvesting Real-Time Systems

    Get PDF
    International audienceThe paper addresses the real-time xed-priority scheduling problem for battery-powered embedded systems whose energy storage unit is replenished by an environmental energy source. In this context, a task may meet its deadline only if its cost of energy can be satis ed early enough. Hence, a scheduling policy for such a system should account for properties of the source of energy, capacity of the energy storage unit and tasks cost of energy. Classical fixed-priority schedulers are no more suitable for this model. Based on these motivations, we propose PFPasap an optimal scheduling algorithm that handles both energy and timing constraints. Furthermore, we state the worst case scenario for non concrete tasksets scheduled with this algorithm and build a necessary and su cient feasibility condition for non concrete tasksets. Moreover, a minimal bound of the storage unit capacity that keeps a taskset schedulable with PFPasap is also proposed. Finally, we validate the proposed theory with large scale simulations and compare our algorithm with other existing ones

    Multiprocessor fixed priority scheduling with limited preemptions

    Get PDF
    Challenges associated with allowing preemptions and migrations are compounded in multicore systems, particularly under global scheduling policies, because of the potentially high overheads. For example, multiple levels of cache greatly increase preemption and migration related overheads as well as the difficulty involved in accurately accounting for them, leading to substantially inflated worst-case execution times (WCETs). Preemption and migration related overheads can be significantly reduced, both in number and in size, by using fixed preemption points in the tasks' code; thus dividing each task into a series of non-preemptive regions (NPRs). This leads to an additional consideration in the scheduling policy. When a high priority task is released and all of the processors are executing non-preemptive regions of lower priority tasks, then there is a choice to be made in terms of how to manage the next preemption. With an eager approach the first lower priority task to reach a preemption point is preempted even if it is not the lowest priority running task. Alternatively, with a lazy approach, preemption is delayed until the lowest priority currently running task reaches its next preemption point. In this paper, we show that under global fixed priority scheduling with eager preemptions each task suffers from at most a single priority inversion each time it resumes execution. Building on this observation, we derive a new response time based schedulability test for tasks with fixed preemption points. Experimental evaluations show that global fixed priority scheduling with eager preemptions is significantly more effective than with lazy preemption using link based scheduling in terms of task set schedulability

    NPM-BUNDLE: Non-Preemptive Multitask Scheduling for Jobs with BUNDLE-Based Thread-Level Scheduling

    Get PDF
    The BUNDLE and BUNDLEP scheduling algorithms are cache-cognizant thread-level scheduling algorithms and associated worst case execution time and cache overhead (WCETO) techniques for hard real-time multi-threaded tasks. The BUNDLE-based approaches utilize the inter-thread cache benefit to reduce WCETO values for jobs. Currently, the BUNDLE-based approaches are limited to scheduling a single task. This work aims to expand the applicability of BUNDLE-based scheduling to multiple task multi-threaded task sets. BUNDLE-based scheduling leverages knowledge of potential cache conflicts to selectively preempt one thread in favor of another from the same job. This thread-level preemption is a requirement for the run-time behavior and WCETO calculation to receive the benefit of BUNDLE-based approaches. This work proposes scheduling BUNDLE-based jobs non-preemptively according to the earliest deadline first (EDF) policy. Jobs are forbidden from preempting one another, while threads within a job are allowed to preempt other threads. An accompanying schedulability test is provided, named Threads Per Job (TPJ). TPJ is a novel schedulability test, input is a task set specification which may be transformed (under certain restrictions); dividing threads among tasks in an effort to find a feasible task set. Enhanced by the flexibility to transform task sets and taking advantage of the inter-thread cache benefit, the evaluation shows TPJ scheduling task sets fully preemptive EDF cannot

    Schedulability, Response Time Analysis and New Models of P-FRP Systems

    Get PDF
    Functional Reactive Programming (FRP) is a declarative approach for modeling and building reactive systems. FRP has been shown to be an expressive formalism for building applications of computer graphics, computer vision, robotics, etc. Priority-based FRP (P-FRP) is a formalism that allows preemption of executing programs and guarantees real-time response. Since functional programs cannot maintain state and mutable data, changes made by programs that are preempted have to be rolled back. Hence in P-FRP, a higher priority task can preempt the execution of a lower priority task, but the preempted lower priority task will have to restart after the higher priority task has completed execution. This execution paradigm is called Abort-and-Restart (AR). Current real-time research is focused on preemptive of non-preemptive models of execution and several state-of-the-art methods have been developed to analyze the real-time guarantees of these models. Unfortunately, due to its transactional nature where preempted tasks are aborted and have to restart, the execution semantics of P-FRP does not fit into the standard definitions of preemptive or non-preemptive execution, and the research on the standard preemptive and non-preemptive may not applicable for the P-FRP AR model. Out of many research areas that P-FRP may demands, we focus on task scheduling which includes task and system modeling, priority assignment, schedulability analysis, response time analysis, improved P-FRP AR models, algorithms and corresponding software. In this work, we review existing results on P-FRP task scheduling and then present our research contributions: (1) a tighter feasibility test interval regarding the task release offsets as well as a linked list based algorithm and implementation for scheduling simulation; (2) P-FRP with software transactional memory-lazy conflict detection (STM-LCD); (3) a non-work-conserving scheduling model called Deferred Start; (4) a multi-mode P-FRP task model; (5) SimSo-PFRP, the P-FRP extension of SimSo - a SimPy-based, highly extensible and user friendly task generator and task scheduling simulator.Computer Science, Department o

    Optimal Selection of Preemption Points to Minimize Preemption Overhead

    Get PDF
    A central issue for verifying the schedulability of hard real-time systems is the correct evaluation of task execution times. These values are significantly influenced by the preemption overhead, which mainly includes the cache related delays and the context switch times introduced by each preemption. Since such an overhead significantly depends on the particular point in the code where preemption takes place, this paper proposes a method for placing suitable preemption points in each task in order to maximize the chances of finding a schedulable solution. In a previous work, we presented a method for the optimal selection of preemption points under the restrictive assumption of a fixed preemption cost, identical for each preemption point. In this paper, we remove such an assumption, exploring a more realistic and complex scenario where the preemption cost varies throughout the task code. Instead of modeling the problem with an integer programming formulation, with exponential worst-case complexity, we derive an optimal algorithm that has a linear time and space complexity. This somewhat surprising result allows selecting the best preemption points even in complex scenarios with a large number of potential preemption locations. Experimental results are also presented to show the effectiveness of the proposed approach in increasing the system schedulability

    Rate Monotonic vs. EDF: Judgment Day

    Full text link
    • …
    corecore