593 research outputs found

    VOLUNTARY CONTROL OF BREATHING ACCORDING TO THE BREATHING PATTERN DURING LISTENING TO MUSIC AND NON-CONTACT MEASUREMENT OF HEART RATE AND RESPIRATION

    Get PDF
    We investigated if listening to songs changes breathing pattern which changes autonomic responses such as heart rate (HR) and heart rate variability (HRV) or change in breathing pattern is a byproduct of listening to songs or change in breathing pattern as well as listening to songs causes changes in autonomic responses. Seven subjects (4 males and 3 females) participated in a pilot study where they listened to two types of songs and used a custom developed biofeedback program to control their breathing pattern to match the one recorded during listening to the songs. Coherencies between EEG, breathing pattern and RR intervals (RRI) were calculated to study the interaction with neural responses. Trends in HRV varied only during listening to songs, suggesting that autonomic response was affected by listening to songs irrespective of control of breathing. Effective coherence during songs while spontaneously breathing was more than during silence and during control of breathing. These results, although preliminary, suggest that listening to songs as well as change in breathing patterns changes the autonomic response but the effect of listening to songs may surpass the effect of changes in breathing. We explored feasibility of using non-contact measurements of HR and breathing rate (BR) by using recently developed Facemesh and other methods for tracking regions of interests from videos of faces of subjects. Performance was better for BR than HR, and over currently used methods. However, refinement of the approach would be needed to get the precision required for detecting subtle changes

    A brain-machine interface for assistive robotic control

    Get PDF
    Brain-machine interfaces (BMIs) are the only currently viable means of communication for many individuals suffering from locked-in syndrome (LIS) – profound paralysis that results in severely limited or total loss of voluntary motor control. By inferring user intent from task-modulated neurological signals and then translating those intentions into actions, BMIs can enable LIS patients increased autonomy. Significant effort has been devoted to developing BMIs over the last three decades, but only recently have the combined advances in hardware, software, and methodology provided a setting to realize the translation of this research from the lab into practical, real-world applications. Non-invasive methods, such as those based on the electroencephalogram (EEG), offer the only feasible solution for practical use at the moment, but suffer from limited communication rates and susceptibility to environmental noise. Maximization of the efficacy of each decoded intention, therefore, is critical. This thesis addresses the challenge of implementing a BMI intended for practical use with a focus on an autonomous assistive robot application. First an adaptive EEG- based BMI strategy is developed that relies upon code-modulated visual evoked potentials (c-VEPs) to infer user intent. As voluntary gaze control is typically not available to LIS patients, c-VEP decoding methods under both gaze-dependent and gaze- independent scenarios are explored. Adaptive decoding strategies in both offline and online task conditions are evaluated, and a novel approach to assess ongoing online BMI performance is introduced. Next, an adaptive neural network-based system for assistive robot control is presented that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. Exploratory learning, or “learning by doing,” is an unsupervised method in which the robot is able to build an internal model for motor planning and coordination based on real-time sensory inputs received during exploration. Finally, a software platform intended for practical BMI application use is developed and evaluated. Using online c-VEP methods, users control a simple 2D cursor control game, a basic augmentative and alternative communication tool, and an assistive robot, both manually and via high-level goal-oriented commands

    Brain Computer Interfaces for the Control of Robotic Swarms

    Get PDF
    abstract: A robotic swarm can be defined as a large group of inexpensive, interchangeable robots with limited sensing and/or actuating capabilities that cooperate (explicitly or implicitly) based on local communications and sensing in order to complete a mission. Its inherent redundancy provides flexibility and robustness to failures and environmental disturbances which guarantee the proper completion of the required task. At the same time, human intuition and cognition can prove very useful in extreme situations where a fast and reliable solution is needed. This idea led to the creation of the field of Human-Swarm Interfaces (HSI) which attempts to incorporate the human element into the control of robotic swarms for increased robustness and reliability. The aim of the present work is to extend the current state-of-the-art in HSI by applying ideas and principles from the field of Brain-Computer Interfaces (BCI), which has proven to be very useful for people with motor disabilities. At first, a preliminary investigation about the connection of brain activity and the observation of swarm collective behaviors is conducted. After showing that such a connection may exist, a hybrid BCI system is presented for the control of a swarm of quadrotors. The system is based on the combination of motor imagery and the input from a game controller, while its feasibility is proven through an extensive experimental process. Finally, speech imagery is proposed as an alternative mental task for BCI applications. This is done through a series of rigorous experiments and appropriate data analysis. This work suggests that the integration of BCI principles in HSI applications can be successful and it can potentially lead to systems that are more intuitive for the users than the current state-of-the-art. At the same time, it motivates further research in the area and sets the stepping stones for the potential development of the field of Brain-Swarm Interfaces (BSI).Dissertation/ThesisMasters Thesis Mechanical Engineering 201

    Stationary wavelet processing and data imputing in myoelectric pattern recognition on a low-cost embedded system

    Get PDF
    Pattern recognition-based decoding of surface electromyography allows for intuitive and flexible control of prostheses but comes at the cost of sensitivity to in-band noise and sensor faults. System robustness can be improved with wavelet-based signal processing and data imputing, but no attempt has been made to implement such algorithms on real-time, portable systems. The aim of this work was to investigate the feasibility of low-latency, wavelet-based processing and data imputing on an embedded device capable of controlling upper-arm prostheses. Nine able-bodied subjects performed Motion Tests while inducing transient disturbances. Additional investigation was performed on pre-recorded Motion Tests from 15 able-bodied subjects with simulated disturbances. Results from real-time tests were inconclusive, likely due to the low number of disturbance episodes, but simulated tests showed significant improvements in most metrics for both algorithms. However, both algorithms also showed reduced responsiveness during disturbance episodes. These results suggest wavelet-based processing and data imputing can be implemented in portable, real-time systems to potentially improve robustness to signal distortion in prosthetic devices with the caveat of reduced responsiveness for the typically short duration of signal disturbances. The trade-off between large-scale signal corruption robustness and system responsiveness warrants further studies in daily life activities

    Edge-based Compression and Classification for Smart Healthcare Systems: Concept, Implementation and Evaluation

    Get PDF
    Smart healthcare systems require recording, transmitting and processing large volumes of multimodal medical data generated from different types of sensors and medical devices, which is challenging and may turn some of the remote health monitoring applications impractical. Moving computational intelligence to the net- work edge is a promising approach for providing efficient and convenient ways for continuous-remote monitoring. Implementing efficient edge-based classification and data reduction techniques are of paramount importance to enable smart health- care systems with efficient real-time and cost-effective remote monitoring. Thus, we present our vision of leveraging edge computing to monitor, process, and make au- tonomous decisions for smart health applications. In particular, we present and im- plement an accurate and lightweight classification mechanism that, leveraging some time-domain features extracted from the vital signs, allows for a reliable seizures detection at the network edge with precise classification accuracy and low com- putational requirement. We then propose and implement a selective data transfer scheme, which opts for the most convenient way for data transmission depending on the detected patient’s conditions. In addition to that, we propose a reliable energy-efficient emergency notification system for epileptic seizure detection, based on conceptual learning and fuzzy classification. Our experimental results assess the performance of the proposed system in terms of data reduction, classification accuracy, battery lifetime, and transmission delay. We show the effectiveness of our system and its ability to outperform conventional remote monitoring systems that ignore data processing at the edge by: (i) achieving 98.3% classification accuracy for seizures detection, (ii) extending battery lifetime by 60%, and (iii) decreasing average transmission delay by 90%

    Tongue Control of Upper-Limb Exoskeletons For Individuals With Tetraplegia

    Get PDF

    Real-time support for high performance aircraft operation

    Get PDF
    The feasibility of real-time processing schemes using artificial neural networks (ANNs) is investigated. A rationale for digital neural nets is presented and a general processor architecture for control applications is illustrated. Research results on ANN structures for real-time applications are given. Research results on ANN algorithms for real-time control are also shown

    Visible Light Optical Camera Communication for Electroencephalography Applications

    Get PDF
    Due to the cable-free deployment and flexibility of wireless communications, the data transmission in the applications of home and healthcare has shown a trend of moving wired communications to wireless communications. One typical example is electroencephalography (EEG). Evolution in the radio frequency (RF) technology has made it is possible to transmit the EEG data without data cable bundles. However, presently, the RF-based wireless technology used in EEG suffers from electromagnetic interference and might also have adverse effects on the health of patient and other medical equipment used in hospitals or homes. This puts some limits in RF-based EEG solutions, which is particularly true in RF restricted zones like Intensive Care Units (ICUs). As a recently developed optical wireless communication (OWC) technology, visible light communication (VLC) using light-emitting diodes (LEDs) for both simultaneous illumination and data communication has shown its advantages of free from electromagnetic interference, potential huge unlicensed bandwidth and enhanced data privacy due to the line transmission of light. The most recent development of VLC is the optical camera communication (OCC), which is an extension of VLC IEEE standard 802.15.7, also referred to as visible light optical camera communication (VL-OCC). Different from the conventional VLC where traditional photodiodes are used to detect and receive the data, VL-OCC uses the imaging camera as the photodetector to receive the data in the form of visible light signals. The data rate requirement of EEG is dependent on the application; hence this thesis investigates a low cost, organic LED (OLED)-driven VL-OCC wireless data transmission system for EEG applications
    • …
    corecore