26 research outputs found

    Simulated Assessment of Interference Effects in Direct Sequence SpreadSpectrum (DSSS) QPSK Receiver

    Get PDF
    This research developed and validated a generic simulation for a direct sequence spread spectrum (DSSS), using differential phase shift keying (DPSK) and phase shift keying (PSK) modulations, providing the flexibility for assessing intentional interference effect using DSSS quadrature phase shift keying receiver (QPSK) with matched filtering as a reference. The evaluation compares a comprehensive pool of jamming waveforms at pass-band that include continuous wave (CW) interference, broad-band jamming, partial-band interference and pulsed interference. The methodology for jamming assessment included comparing the bit error rate (BER) versus required jamming to signal ratio (JSR) for different interferers using the Monte Carlo approach. This thesis also analyzes the effect of varying the jammer bandwidth for broad-band jammers including broad-band noise (BBN), frequency hopping interference (FHI), comb- spectrum interference (CSI), multi-tone jamming (MTJ), random frequency modulated interference (RFMI) and linear frequency modulated interference (LFMI). Also, the effect of changing the duty cycle for pulsed CW waveforms is compared with the worst case pulsed jamming equation. After the evaluation of different interferers, the research concludes that pulsed binary phase shift keying (BPSK) jamming is the most effective technique, whereas the CW tone jamming and CW BPSK interference result are least effective. It is also concluded that by finding an optimum bandwidth, FHI and BBN improves the required JSR by approximately 2.1 dB, RFMI and LFMI interference by 0.9 and 1.5 dB respectively. Alternately, MTJ and CSI improves their effectiveness in 4.1 dB and 3.6 dB respectively, matching the performance of the pulsed BPSK jammer

    REDESIGNING THE COUNTER UNMANNED SYSTEMS ARCHITECTURE

    Get PDF
    Includes supplementary material. Please contact [email protected] for access.When the Islamic State used Unmanned Aerial Vehicles (UAV) to target coalition forces in 2014, the use of UAVs rapidly expanded, giving weak states and non-state actors an asymmetric advantage over their technologically superior foes. This asymmetry led the Department of Defense (DOD) and the Department of Homeland Security (DHS) to spend vast sums of money on counter-unmanned aircraft systems (C-UAS). Despite the market density, many C-UAS technologies use expensive, bulky, and high-power-consuming electronic attack methods for ground-to-air interdiction. This thesis outlines the current technology used for C-UAS and proposes a defense-in-depth framework using airborne C-UAS patrols outfitted with cyber-attack capabilities. Using aerial interdiction, this thesis develops a novel C-UAS device called the Detachable Drone Hijacker—a low-size, weight, and power C-UAS device designed to deliver cyber-attacks against commercial UAVs using the IEEE 802.11 wireless communication specification. The experimentation results show that the Detachable Drone Hijacker, which weighs 400 grams, consumes one Watt of power, and costs $250, can interdict adversarial UAVs with no unintended collateral damage. This thesis recommends that the DOD and DHS incorporates aerial interdiction to support its C-UAS defense-in-depth, using technologies similar to the Detachable Drone Hijacker.DASN-OE, Washington DC, 20310Captain, United States Marine CorpsApproved for public release. Distribution is unlimited

    Design of surface acoustic wave filters and applications in future communication systems

    Get PDF

    Detection of Man-in-the-middle Attacks Using Physical Layer Wireless Security Techniques

    Get PDF
    In a wireless network environment, all the users are able to access the wireless channel. Thus, if malicious users exploit this feature by mimicking the characteristics of a normal user or even the central wireless access point (AP), they can intercept almost all the information through the network. This scenario is referred as a Man-in-the-middle (MITM) attack. In the MITM attack, the attackers usually set up a rogue AP to spoof the clients. In this thesis, we focus on the detection of MITM attacks in Wi-Fi networks. The thesis introduces the entire process of performing and detecting the MITM attack in two separate sections. The first section starts from creating a rogue AP by imitating the characteristics of the legitimate AP. Then a multi-point jamming attack is conducted to kidnap the clients and force them to connect to the rogue AP. Furthermore, the sniffer software is used to intercept the private information passing through the rogue AP. The second section focuses on the detection of MITM attacks from two aspects: jamming attacks detection and rogue AP detection. In order to enable the network to perform defensive strategies more effectively, distinguishing different types of jamming attacks is necessary. We begin by using signal strength consistency mechanism in order to detect jamming attacks. Then, based on the statistical data of packets send ratio (PSR) and packets delivery ratio (PDR) in different jamming situations, a model is built to further differentiate the jamming attacks. At the same time, we gather the received signal strength indication (RSSI) values from three monitor nodes which process the random RSSI values employing a sliding window algorithm. According to the mean and standard deviation curve of RSSI, we can detect if a rogue AP is present within the vicinity. All these proposed approaches, either attack or detection, have been validated via computer simulations and experimental hardware implementations including Backtrack 5 Tools and MATLAB software suite

    Distributed Wireless Multi-Sensor Technologies, A Novel Approach to Reduce Motor Energy Usage

    Full text link

    Quantifying, generating and mitigating radio interference in Low-Power Wireless Networks

    Get PDF
    Doctoral Programme in Telecommunication - MAP-teleRadio interference a ects the performance of low-power wireless networks (LPWN), leading to packet loss and reduced energy-e ciency, among other problems. Reliability of communications is key to expand application domains for LPWN. Since most LPWN operate in the license-free Industrial Scienti c and Medical (ISM) bands and hence share the spectrum with other wireless technologies, addressing interference is an important challenge. In this context, we present JamLab: a low-cost infrastructure to augment existing LPWN testbeds with accurate interference generation in LPWN testbeds, useful to experimentally investigate the impact of interference on LPWN protocols. We investigate how interference in a shared wireless medium can be mitigated by performing wireless channel energy sensing in low-cost and low-power hardware. For this pupose, we introduce a novel channel quality metric|dubbed CQ|based on availability of the channel over time, which meaningfully quanti es interference. Using data collected from a number of Wi-Fi networks operating in a library building, we show that our metric has strong correlation with the Packet Reception Rate (PRR). We then explore dynamic radio resource adaptation techniques|namely packet size and error correction code overhead optimisations|based on instantaneous spectrum usage as quanti ed by our CQ metric. To conclude, we study emerging fast fading in the composite channel under constructive baseband interference, which has been recently introduced in low-power wireless networks as a promising technique. We show the resulting composite signal becomes vulnerable in the presence of noise, leading to signi cant deterioration of the link, whenever the carriers have similar amplitudes. Overall, our results suggest that the proposed tools and techniques have the potential to improve performance in LPWN operating in the unlicensed spectrum, improving coexistence while maintaining energy-e ciency. Future work includes implementation in next generation platforms, which provides superior computational capacity and more exible radio chip designs.A interferência de r adio afeta o desempenho das redes de comunicação sem o de baixo consumo - low-power wireless networks (LPWN), o que provoca perdas de pacotes, diminuição da e ciência energética, entre outros problemas. A contabilidade das comunicações e importante para a expansão e adoção das LPWN nos diversos domínios de potencial aplicação. Visto que a grande maioria das LPWN partilham o espectro radioelétrico com outras redes sem o, a interferência torna-se um desafio importante. Neste contexto, apresentamos o JamLab: uma infraestrutura de baixo custo para estender a funcionalidade dos ambientes laboratoriais para o estudo experimental do desempenho das LPWN sob interferência. Resultando, assim, numa ferramenta essencial para a adequada verificação dos protocolos de comunicações das LPWN. Para al em disso, a Tese introduz uma nova técnica para avaliar o ambiente radioelétrico e demostra a sua utilização para gerir recursos disponíveis no transceptor rádio, o que permite melhorar a fiabilidade das comunicações, nomeadamente nas plataformas de baixo consumo, garantindo e ciência energética. Assim, apresentamos uma nova métrica| denominada CQ - concebida especificamente para quantificar a qualidade do canal r adio, com base na sua disponibilidade temporal. Mediante dados adquiridos em v arias redes sem o Wi-Fi, instaladas no edifício de uma biblioteca universitária, demonstra-se que esta métrica tem um ótimo desempenho, evidenciando uma elevada correlação com a taxa de receção de pacotes. Investiga-se ainda a potencialidade da nossa métrica CQ para gerir dinamicamente recursos de radio como tamanho de pacote e taxa de correlação de erros dos códigos - baseado em medições instantâneas da qualidade do canal de radio. Posteriormente, estuda-se um modelo de canal composto, sob interferência construtiva de banda-base. A interferência construtiva de banda-base tem sido introduzida recentemente nas LPWN, evidenciando ser uma técnica prometedora no que diz respeito à baixa latência e à contabilidade das comunicações. Na Tese investiga-se o caso crítico em que o sinal composto se torna vulnerável na presença de ruído, o que acaba por deteriorar a qualidade da ligação, no caso em que as amplitudes das distintas portadoras presentes no receptor sejam similares. Finalmente, os resultados obtidos sugerem que as ferramentas e as técnicas propostas têm potencial para melhorar o desempenho das LPWN, num cenário de partilha do espectro radioelétrico com outras redes, melhorando a coexistência e mantendo e ciência energética. Prevê-se como trabalho futuro a implementação das técnicas propostas em plataformas de próxima geração, com maior flexibilidade e poder computacional para o processamento dos sinais rádio.This work was supported by FCT (Portuguese Foundation for Science and Technology) and by ESF (European Social Fund) through POPH (Portuguese Human Potential Operational Program), under PhD grant SFRH/BD/62198/2009; also by FCT under project ref. FCOMP-01-0124-FEDER-014922 (MASQOTS), and EU through the FP7 programme, under grant FP7-ICT-224053 (CONET)

    Planning and realization of a WiFi 6 network to replace wired connections in an enterprise environment

    Get PDF
    WiFi (Wireless Fidelity) is a popular wireless LAN technology. It provides broadband wireless connectivity to all the users in the unlicensed 2.4 GHz and 5 GHz frequency bands. Given the fact that the WiFi technology is much easier and cost-efficient to deploy, it is rapidly gaining acceptance as an alternative to a wired local area network. Nowadays the Wireless access to data is a necessity for everyone in the daily life. Considering the last 30 years, the unlimited access to information has transformed entire industries, fueling growth, productivity and profits.The WiFi technology, which is governed by the IEEE 802.11 standards body, has played a key role in this transformation. In fact, thanks to WiFi, users can benefit of low cost access to high data rate wireless connectivity. The first version of the IEEE 802.11 protocol was released in 1997. IEEE 802.11 has been improved with different versions in order to enhance the throughput and support new technologies. WiFi networks are now experiencing the bandwidth-demanding media content as well as multiple WiFi devices for each user. As a consequence of this, WiFi 6, which is based on the IEEE 802.11ax standard, is focused on improving the efficiency of the radio link. However, there is a relatively modest increase in peak data rate too. In this thesis we have planned and realized a WiFi 6 network to replace wired connections in an enterprise environment. To do this the optimal access point placement problem has been taken into account, resulting in an improvement of the coverage. Subsequently, after the configuration from the controller, the performance of the new network has been tested in order to study if WiFi 6 can be used instead of wired connections.WiFi (Wireless Fidelity) is a popular wireless LAN technology. It provides broadband wireless connectivity to all the users in the unlicensed 2.4 GHz and 5 GHz frequency bands. Given the fact that the WiFi technology is much easier and cost-efficient to deploy, it is rapidly gaining acceptance as an alternative to a wired local area network. Nowadays the Wireless access to data is a necessity for everyone in the daily life. Considering the last 30 years, the unlimited access to information has transformed entire industries, fueling growth, productivity and profits.The WiFi technology, which is governed by the IEEE 802.11 standards body, has played a key role in this transformation. In fact, thanks to WiFi, users can benefit of low cost access to high data rate wireless connectivity. The first version of the IEEE 802.11 protocol was released in 1997. IEEE 802.11 has been improved with different versions in order to enhance the throughput and support new technologies. WiFi networks are now experiencing the bandwidth-demanding media content as well as multiple WiFi devices for each user. As a consequence of this, WiFi 6, which is based on the IEEE 802.11ax standard, is focused on improving the efficiency of the radio link. However, there is a relatively modest increase in peak data rate too. In this thesis we have planned and realized a WiFi 6 network to replace wired connections in an enterprise environment. To do this the optimal access point placement problem has been taken into account, resulting in an improvement of the coverage. Subsequently, after the configuration from the controller, the performance of the new network has been tested in order to study if WiFi 6 can be used instead of wired connections

    Technology Assessment for the Future Aeronautical Communications System

    Get PDF
    To address emerging saturation in the VHF aeronautical bands allocated internationally for air traffic management communications, the International Civil Aviation Organization (ICAO) has requested development of a common global solution through its Aeronautical Communications Panel (ACP). In response, the Federal Aviation Administration (FAA) and Eurocontrol initiated a joint study, with the support of NASA and U.S. and European contractors, to provide major findings on alternatives and recommendations to the ICAO ACP Working Group C (WG-C). Under an FAA/Eurocontrol cooperative research and development agreement, ACP WG-C Action Plan 17 (AP-17), commonly referred to as the Future Communications Study (FCS), NASA Glenn Research Center is responsible for the investigation of potential communications technologies that support the long-term mobile communication operational concepts of the FCS. This report documents the results of the first phase of the technology assessment and recommendations referred to in the Technology Pre-Screening Task 3.1 of AP-17. The prescreening identifies potential technologies that are under development in the industry and provides an initial assessment against a harmonized set of evaluation criteria that address high level capabilities, projected maturity for the time frame for usage in aviation, and potential applicability to aviation. A wide variety of candidate technologies were evaluated from several communications service categories including: cellular telephony; IEEE-802.xx standards; public safety radio; satellite and over-the-horizon communications; custom narrowband VHF; custom wideband; and military communications

    Identification of Technologies for Provision of Future Aeronautical Communications

    Get PDF
    This report describes the process, findings, and recommendations of the second of three phases of the Future Communications Study (FCS) technology investigation conducted by NASA Glenn Research Center and ITT Advanced Engineering & Sciences Division for the Federal Aviation Administration (FAA). The FCS is a collaborative research effort between the FAA and Eurocontrol to address frequency congestion and spectrum depletion for safety critical airground communications. The goal of the technology investigation is to identify technologies that can support the longterm aeronautical mobile communication operating concept. A derived set of evaluation criteria traceable to the operating concept document is presented. An adaptation of the analytical hierarchy process is described and recommended for selecting candidates for detailed evaluation. Evaluations of a subset of technologies brought forward from the prescreening process are provided. Five of those are identified as candidates with the highest potential for continental airspace solutions in L-band (P-34, W-CDMA, LDL, B-VHF, and E-TDMA). Additional technologies are identified as best performers in the unique environments of remote/oceanic airspace in the satellite bands (Inmarsat SBB and a custom satellite solution) and the airport flight domain in C-band (802.16e). Details of the evaluation criteria, channel models, and the technology evaluations are provided in appendixes

    Wireless Network Communications Overview for Space Mission Operations

    Get PDF
    The mission of the On-Board Wireless Working Group (WWG) is to serve as a general CCSDS focus group for intra-vehicle wireless technologies. The WWG investigates and makes recommendations pursuant to standardization of applicable wireless network protocols, ensuring the interoperability of independently developed wireless communication assets. This document presents technical background information concerning uses and applicability of wireless networking technologies for space missions. Agency-relevant driving scenarios, for which wireless network communications will provide a significant return-on-investment benefiting the participating international agencies, are used to focus the scope of the enclosed technical information
    corecore