958 research outputs found

    Energy-aware distributed routing algorithm to tolerate network failure in wireless sensor networks

    Get PDF
    Wireless Sensor Networks are prone to link/node failures due to various environmental hazards such as interference and internal faults in deployed sensor nodes. Such failures can result in a disconnection in part of the network and the sensed data being unable to obtain a route to the sink(s), i.e. a network failure. Network failures potentially degrade the Quality of Service (QoS) of Wireless Sensor Networks (WSNs). It is very difficult to monitor network failures using a manual operator in a harsh or hostile environment. In such environments, communication links can easy fail because of node unequal energy depletion and hardware failure or invasion. Thus it is desirable that deployed sensor nodes are capable of overcoming network failures. In this paper, we consider the problem of tolerating network failures seen by deployed sensor nodes in a WSN. We first propose a novel clustering algorithm for WSNs, termed Distributed Energy Efficient Heterogeneous Clustering (DEEHC) that selects cluster heads according to the residual energy of deployed sensor nodes with the aid of a secondary timer. During the clustering phase, each sensor node finds k-vertex disjoint paths to cluster heads depending on the energy level of its neighbor sensor nodes. We then present a k-Vertex Disjoint Path Routing (kVDPR) algorithm where each cluster head finds k-vertex disjoint paths to the base station and relays their aggregate data to the base station. Furthermore, we also propose a novel Route Maintenance Mechanism (RMM) that can repair k-vertex disjoint paths throughout the monitoring session. The resulting WSNs become tolerant to k-1 failures in the worst case. The proposed scheme has been extensively tested using various network scenarios and compared to the existing state of the art approaches to show the effectiveness of the proposed scheme

    Quality-of-service in wireless sensor networks: state-of-the-art and future directions

    Get PDF
    Wireless sensor networks (WSNs) are one of today’s most prominent instantiations of the ubiquituous computing paradigm. In order to achieve high levels of integration, WSNs need to be conceived considering requirements beyond the mere system’s functionality. While Quality-of-Service (QoS) is traditionally associated with bit/data rate, network throughput, message delay and bit/packet error rate, we believe that this concept is too strict, in the sense that these properties alone do not reflect the overall quality-ofservice provided to the user/application. Other non-functional properties such as scalability, security or energy sustainability must also be considered in the system design. This paper identifies the most important non-functional properties that affect the overall quality of the service provided to the users, outlining their relevance, state-of-the-art and future research directions

    A survey on fault diagnosis in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) often consist of hundreds of sensor nodes that may be deployed in relatively harsh and complex environments. In views of hardware cost, sensor nodes always adopt relatively cheap chips, which makes these nodes become error-prone or faulty in the course of their operation. Natural factors and electromagnetic interference could also influence the performance of the WSNs. When sensor nodes become faulty, they may have died which means they cannot communicate with other members in the wireless network, they may be still alive but produce incorrect data, they may be unstable jumping between normal state and faulty state. To improve data quality, shorten response time, strengthen network security, and prolong network lifespan, many studies have focused on fault diagnosis. This survey paper classifies fault diagnosis methods in recent five years into three categories based on decision centers and key attributes of employed algorithms: centralized approaches, distributed approaches, and hybrid approaches. As all these studies have specific goals and limitations, this paper tries to compare them, lists their merits and limits, and propose potential research directions based on established methods and theories

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    HBMFTEFR: Design of a Hybrid Bioinspired Model for Fault-Tolerant Energy Harvesting Networks via Fuzzy Rule Checks

    Get PDF
    Designing energy harvesting networks requires modelling of energy distribution under different real-time network conditions. These networks showcase better energy efficiency, but are affected by internal & external faults, which increase energy consumption of affected nodes. Due to this probability of node failure, and network failure increases, which reduces QoS (Quality of Service) for the network deployment. To overcome this issue, various fault tolerance & mitigation models are proposed by researchers, but these models require large training datasets & real-time samples for efficient operation. This increases computational complexity, storage cost & end-to-end processing delay of the network, which reduces its QoS performance under real-time use cases. To mitigate these issues, this text proposes design of a hybrid bioinspired model for fault-tolerant energy harvesting networks via fuzzy rule checks. The proposed model initially uses a Genetic Algorithm (GA) to cluster nodes depending upon their residual energy & distance metrics. Clustered nodes are processed via Particle Swarm Optimization (PSO) that assists in deploying a fault-tolerant & energy-harvesting process. The PSO model is further augmented via use of a hybrid Ant Colony Optimization (ACO) Model with Teacher Learner Based Optimization (TLBO), which assists in value-based fault prediction & mitigation operations. All bioinspired models are trained-once during initial network deployment, and then evaluated subsequently for each communication request. After a pre-set number of communications are done, the model re-evaluates average QoS performance, and incrementally reconfigures selected solutions. Due to this incremental tuning, the model is observed to consume lower energy, and showcases lower complexity when compared with other state-of-the-art models. Upon evaluation it was observed that the proposed model showcases 15.4% lower energy consumption, 8.5% faster communication response, 9.2% better throughput, and 1.5% better packet delivery ratio (PDR), when compared with recently proposed energy harvesting models. The proposed model also showcased better fault prediction & mitigation performance when compared with its counterparts, thereby making it useful for a wide variety of real-time network deployments

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Historical Building Monitoring Using an Energy-Efficient Scalable Wireless Sensor Network Architecture

    Get PDF
    We present a set of novel low power wireless sensor nodes designed for monitoring wooden masterpieces and historical buildings, in order to perform an early detection of pests. Although our previous star-based system configuration has been in operation for more than 13 years, it does not scale well for sensorization of large buildings or when deploying hundreds of nodes. In this paper we demonstrate the feasibility of a cluster-based dynamic-tree hierarchical Wireless Sensor Network (WSN) architecture where realistic assumptions of radio frequency data transmission are applied to cluster construction, and a mix of heterogeneous nodes are used to minimize economic cost of the whole system and maximize power saving of the leaf nodes. Simulation results show that the specialization of a fraction of the nodes by providing better antennas and some energy harvesting techniques can dramatically extend the life of the entire WSN and reduce the cost of the whole system. A demonstration of the proposed architecture with a new routing protocol and applied to termite pest detection has been implemented on a set of new nodes and should last for about 10 years, but it provides better scalability, reliability and deployment properties

    Energy-aware strategy for data forwarding in IoT ecosystem

    Get PDF
    The Internet of Things (IoT) is looming technology rapidly attracting many industries and drawing research attention. Although the scale of IoT-applications is very large, the capabilities of the IoT-devices are limited, especially in terms of energy. However, various research works have been done to alleviate these shortcomings, but the schemes introduced in the literature are complex and difficult to implement in practical scenarios. Therefore, considering the energy consumption of heterogeneous nodes in IoT eco-system, a simple energy-efficient routing technique is proposed. The proposed system has also employed an SDN controller that acts as a centralized manager to control and monitor network services, there by restricting the access of selfish nodes to the network. The proposed system constructs an analytical algorithm that provides reliable data transmission operations and controls energy consumption using a strategic mechanism where the path selection process is performed based on the remaining energy of adjacent nodes located in the direction of the destination node. The proposed energy-efficient data forwarding mechanism is compared with the existing AODV routing technique. The simulation result demonstrates that the protocol is superior to AODV in terms of packet delivery rate, throughput, and end-to-end delay
    • …
    corecore