225 research outputs found

    Fault-tolerant computation using algebraic homomorphisms

    Get PDF
    Also issued as Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1992.Includes bibliographical references (p. 193-196).Supported by the Defense Advanced Research Projects Agency, monitored by the U.S. Navy Office of Naval Research. N00014-89-J-1489 Supported by the Charles S. Draper Laboratories. DL-H-418472Paul E. Beckmann

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    A computer-aided design for digital filter implementation

    Get PDF
    Imperial Users onl

    Serial-data computation in VLSI

    Get PDF

    The 1992 4th NASA SERC Symposium on VLSI Design

    Get PDF
    Papers from the fourth annual NASA Symposium on VLSI Design, co-sponsored by the IEEE, are presented. Each year this symposium is organized by the NASA Space Engineering Research Center (SERC) at the University of Idaho and is held in conjunction with a quarterly meeting of the NASA Data System Technology Working Group (DSTWG). One task of the DSTWG is to develop new electronic technologies that will meet next generation electronic data system needs. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The NASA SERC is proud to offer, at its fourth symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories, the electronics industry, and universities. These speakers share insights into next generation advances that will serve as a basis for future VLSI design

    Small business innovation research program solicitation: Closing date July 16, 1990

    Get PDF
    This is the eighth annual solicitation by NASA addressed to small business firms, inviting them to submit proposals for research, or research and development, activities in some of the science and engineering areas of interest to NASA. The solicitation describes the Small Business Innovative Research (SBIR) program, identifies eligibility requirements, outlines the required proposal format and content, states proposal preparation and submission requirements, describes the proposal evaluation and award selection process, and provides other information to assist those interested in participating in NASA's SBIR program. It also identifies the technical topics and subtopics for which SBIR proposals are solicited. These cover a broad range of current NASA interests, but do not necessarily include all areas in which NASA plans or currently conducts research. High-risk high pay-off innovations are desired

    Planning assistance for the NASA 30/20 GHz program. Network control architecture study.

    Get PDF
    Network Control Architecture for a 30/20 GHz flight experiment system operating in the Time Division Multiple Access (TDMA) was studied. Architecture development, identification of processing functions, and performance requirements for the Master Control Station (MCS), diversity trunking stations, and Customer Premises Service (CPS) stations are covered. Preliminary hardware and software processing requirements as well as budgetary cost estimates for the network control system are given. For the trunking system control, areas covered include on board SS-TDMA switch organization, frame structure, acquisition and synchronization, channel assignment, fade detection and adaptive power control, on board oscillator control, and terrestrial network timing. For the CPS control, they include on board processing and adaptive forward error correction control

    An energy-efficient hardware system for robust and reliable heart rate monitoring

    Get PDF
    Cardiac arrhythmia, one of the most common causes of death in the world today, is not always effectively detected by regular examinations, as it usually occurs infrequently and suddenly. Therefore, real-time, continuous monitoring of the heart rate is needed to detect arrhythmia problems sooner and prevent their severe consequences. To make continuous monitoring possible and give it widespread acceptance, a portable heart rate monitoring system must have three key characteristics: (1) accuracy, (2) portability, and (3) long battery life. Previous studies have focused on addressing these problems separately, either improving the accuracy of the monitoring algorithm or the efficiency of the underlying hardware. This thesis proposes a robust and reliable heart rate monitoring system (RRHMS), in which both algorithm accuracy and hardware efficiency are considered. As a result, algorithmic optimizations are exploited to enable further hardware efficiency. In the RRHMS, robust heart rate monitoring is achieved by extracting heart rates from both electrocardiogram (ECG) and arterial blood pressure (ABP) signals and fusing them based on the signal qualities. Therefore, accurate heart rate data can be provided continuously, even when one signal is severely corrupted. Algorithmic optimizations are applied to merge the separate ECG and ABP processing steps into shared ones, which allows shared hardware modules and hence low-area (portable) hardware design. Also, an embedded hardware architecture framework is proposed for the design of the RRHMS hardware system. Coarse-grained functional units (FUs) can be easily added or removed in this framework, allowing for application-specific hardware optimization. Further, the application invariant properties are used to achieve low-overhead fault tolerance in the FUs to enhance reliability. Both ASIC and FPGA implementations of the RRHMS are able to accurately detect heart rates in real time while consuming only 1/2870 and 1/923 of the energy required by the Android implementation
    corecore