149 research outputs found

    Interconnection networks for parallel and distributed computing

    Get PDF
    Parallel computers are generally either shared-memory machines or distributed- memory machines. There are currently technological limitations on shared-memory architectures and so parallel computers utilizing a large number of processors tend tube distributed-memory machines. We are concerned solely with distributed-memory multiprocessors. In such machines, the dominant factor inhibiting faster global computations is inter-processor communication. Communication is dependent upon the topology of the interconnection network, the routing mechanism, the flow control policy, and the method of switching. We are concerned with issues relating to the topology of the interconnection network. The choice of how we connect processors in a distributed-memory multiprocessor is a fundamental design decision. There are numerous, often conflicting, considerations to bear in mind. However, there does not exist an interconnection network that is optimal on all counts and trade-offs have to be made. A multitude of interconnection networks have been proposed with each of these networks having some good (topological) properties and some not so good. Existing noteworthy networks include trees, fat-trees, meshes, cube-connected cycles, butterflies, Möbius cubes, hypercubes, augmented cubes, k-ary n-cubes, twisted cubes, n-star graphs, (n, k)-star graphs, alternating group graphs, de Bruijn networks, and bubble-sort graphs, to name but a few. We will mainly focus on k-ary n-cubes and (n, k)-star graphs in this thesis. Meanwhile, we propose a new interconnection network called augmented k-ary n- cubes. The following results are given in the thesis.1. Let k ≄ 4 be even and let n ≄ 2. Consider a faulty k-ary n-cube Q(^k_n) in which the number of node faults f(_n) and the number of link faults f(_e) are such that f(_n) + f(_e) ≀ 2n - 2. We prove that given any two healthy nodes s and e of Q(^k_n), there is a path from s to e of length at least k(^n) - 2f(_n) - 1 (resp. k(^n) - 2f(_n) - 2) if the nodes s and e have different (resp. the same) parities (the parity of a node Q(^k_n) in is the sum modulo 2 of the elements in the n-tuple over 0, 1, ∙∙∙ , k - 1 representing the node). Our result is optimal in the sense that there are pairs of nodes and fault configurations for which these bounds cannot be improved, and it answers questions recently posed by Yang, Tan and Hsu, and by Fu. Furthermore, we extend known results, obtained by Kim and Park, for the case when n = 2.2. We give precise solutions to problems posed by Wang, An, Pan, Wang and Qu and by Hsieh, Lin and Huang. In particular, we show that Q(^k_n) is bi-panconnected and edge-bipancyclic, when k ≄ 3 and n ≄ 2, and we also show that when k is odd, Q(^k_n) is m-panconnected, for m = (^n(k - 1) + 2k - 6’ / ‘_2), and (k -1) pancyclic (these bounds are optimal). We introduce a path-shortening technique, called progressive shortening, and strengthen existing results, showing that when paths are formed using progressive shortening then these paths can be efficiently constructed and used to solve a problem relating to the distributed simulation of linear arrays and cycles in a parallel machine whose interconnection network is Q(^k_n) even in the presence of a faulty processor.3. We define an interconnection network AQ(^k_n) which we call the augmented k-ary n-cube by extending a k-ary n-cube in a manner analogous to the existing extension of an n-dimensional hypercube to an n-dimensional augmented cube. We prove that the augmented k-ary n-cube Q(^k_n) has a number of attractive properties (in the context of parallel computing). For example, we show that the augmented k-ary n-cube Q(^k_n) - is a Cayley graph (and so is vertex-symmetric); has connectivity 4n - 2, and is such that we can build a set of 4n - 2 mutually disjoint paths joining any two distinct vertices so that the path of maximal length has length at most max{{n- l)k- (n-2), k + 7}; has diameter [(^k) / (_3)] + [(^k - 1) /( _3)], when n = 2; and has diameter at most (^k) / (_4) (n+ 1), for n ≄ 3 and k even, and at most [(^k)/ (_4) (n + 1) + (^n) / (_4), for n ^, for n ≄ 3 and k odd.4. We present an algorithm which given a source node and a set of n - 1 target nodes in the (n, k)-star graph S(_n,k) where all nodes are distinct, builds a collection of n - 1 node-disjoint paths, one from each target node to the source. The collection of paths output from the algorithm is such that each path has length at most 6k - 7, and the algorithm has time complexity O(k(^3)n(^4))

    The structure connectivity of Data Center Networks

    Full text link
    Last decade, numerous giant data center networks are built to provide increasingly fashionable web applications. For two integers m≄0m\geq 0 and n≄2n\geq 2, the mm-dimensional DCell network with nn-port switches Dm,nD_{m,n} and nn-dimensional BCDC network BnB_{n} have been proposed. Connectivity is a basic parameter to measure fault-tolerance of networks. As generalizations of connectivity, structure (substructure) connectivity was recently proposed. Let GG and HH be two connected graphs. Let F\mathcal{F} be a set whose elements are subgraphs of GG, and every member of F\mathcal{F} is isomorphic to HH (resp. a connected subgraph of HH). Then HH-structure connectivity Îș(G;H)\kappa(G; H) (resp. HH-substructure connectivity Îșs(G;H)\kappa^{s}(G; H)) of GG is the size of a smallest set of F\mathcal{F} such that the rest of GG is disconnected or the singleton when removing F\mathcal{F}. Then it is meaningful to calculate the structure connectivity of data center networks on some common structures, such as star K1,tK_{1,t}, path PkP_k, cycle CkC_k, complete graph KsK_s and so on. In this paper, we obtain that Îș(Dm,n;K1,t)=Îșs(Dm,n;K1,t)=⌈n−11+t⌉+m\kappa (D_{m,n}; K_{1,t})=\kappa^s (D_{m,n}; K_{1,t})=\lceil \frac{n-1}{1+t}\rceil+m for 1≀t≀m+n−21\leq t\leq m+n-2 and Îș(Dm,n;Ks)=⌈n−1s⌉+m\kappa (D_{m,n}; K_s)= \lceil\frac{n-1}{s}\rceil+m for 3≀s≀n−13\leq s\leq n-1 by analyzing the structural properties of Dm,nD_{m,n}. We also compute Îș(Bn;H)\kappa(B_n; H) and Îșs(Bn;H)\kappa^s(B_n; H) for H∈{K1,t,Pk,Ck∣1≀t≀2n−3,6≀k≀2n−1}H\in \{K_{1,t}, P_{k}, C_{k}|1\leq t\leq 2n-3, 6\leq k\leq 2n-1 \} and n≄5n\geq 5 by using gg-extra connectivity of BnB_n

    Combinatorial Structures in Hypercubes

    Get PDF

    Errors in scalable quantum Computers

    Get PDF
    A functional quantum computer potentially outperforms any classical machine exponentially in a number of important computational tasks. Therefore, its physical implementation has to scale efficiently in the number of qubits, specifically in tasks such as treatment of external error sources. Due to the intrinsic complexity and limited accessibility of quantum systems, the validation of quantum gates is fundamentally difficult. Randomized Benchmarking is a protocol to efficiently assess the average fidelity of only Clifford group gates. In this thesis we present a hybrid of Randomized Benchmarking and Monte Carlo sampling for the validation of arbitrary gates. It improves upon the efficiency of current methods while preserving error amplification and robustness against imperfect measurement, but is still exponentially hard. To achieve polynomial scaling, we introduce a symmetry benchmarking protocol that validates the conservation of inherent symmetries in quantum algorithms instead of gate fidelities. Adiabatic quantum computing is believed to be more robust against environmental effects, which we investigate in the typical regime of a scalable quantum computer using renormalization group theory. We show that a k-local Hamiltonian is in fact robust against environmental influence but multipartite entanglement is limited to combined system-bath state which we conclude to result in a more classical behavior more susceptible to thermal noise.Ein Quantencomputer wĂ€re in einer Reihe wichtiger Berechnungen exponenziell effizienter als klassische Computer, unter Vorraussetzung einer fehlerarmen und skalierbaren Implementierung. Aufgrund der intrinsischen KomplexitĂ€t und beschrĂ€nkten Auslesbarkeit von Quantensystemen ist die Validierung von Quantengattern ungleich schwerer als die klassischer. Das Randomized Benchmarking Protokoll leistet dies effizient, ist jedoch beschrĂ€nkt auf Cliffordgatter. In dieser Arbeit prĂ€sentieren wir ein Hybridprotokoll aus Interleaved Randomized Benchmarking und Monte Carlo Sampling zur Validierung von beliebigen Gattern. Trotz Verbesserung gegenĂŒber vergleichbaren Protokollen skalieren die benötigten Ressourcen exponenziell. Um dies zu vermeiden entwickeln wir ein Protokoll, welches die Erhaltung von spezifischen Symmetrien von Quantenalgorithmen untersucht und dadurch RĂŒckschlĂŒsse auf die Fehlerrate der Quantenprozesse zulĂ€sst und demonstrieren seine Effizienz an relevanten Beispielen. Der Effekt von UmgebungseinflĂŒssen auf adiabatische Quantencomputer wird als weit weniger gravierend angenommen als im Falle von konventionellen Systemen, ist jedoch im gleichen Maße weniger verstanden. Wir untersuchen diese Effekte mithilfe von Renormalisierungsgruppentheorie und zeigen, dass k-lokale Hamiltonoperatoren robust sind, vielfach verschrĂ€nkte ZustĂ€nde hingegen nur verschrĂ€nkt mit der Umgebung existieren. Wir folgern daraus ein verstĂ€rkt thermisches Verhalten des Annealingprozesses.QEO/IARPA, Google, ScaleQI

    Design, Analysis and Computation in Wireless and Optical Networks

    Get PDF
    abstract: In the realm of network science, many topics can be abstracted as graph problems, such as routing, connectivity enhancement, resource/frequency allocation and so on. Though most of them are NP-hard to solve, heuristics as well as approximation algorithms are proposed to achieve reasonably good results. Accordingly, this dissertation studies graph related problems encountered in real applications. Two problems studied in this dissertation are derived from wireless network, two more problems studied are under scenarios of FIWI and optical network, one more problem is in Radio- Frequency Identification (RFID) domain and the last problem is inspired by satellite deployment. The objective of most of relay nodes placement problems, is to place the fewest number of relay nodes in the deployment area so that the network, formed by the sensors and the relay nodes, is connected. Under the fixed budget scenario, the expense involved in procuring the minimum number of relay nodes to make the network connected, may exceed the budget. In this dissertation, we study a family of problems whose goal is to design a network with “maximal connectedness” or “minimal disconnectedness”, subject to a fixed budget constraint. Apart from “connectivity”, we also study relay node problem in which degree constraint is considered. The balance of reducing the degree of the network while maximizing communication forms the basis of our d-degree minimum arrangement(d-MA) problem. In this dissertation, we look at several approaches to solving the generalized d-MA problem where we embed a graph onto a subgraph of a given degree. In recent years, considerable research has been conducted on optical and FIWI networks. Utilizing a recently proposed concept “candidate trees” in optical network, this dissertation studies counting problem on complete graphs. Closed form expressions are given for certain cases and a polynomial counting algorithm for general cases is also presented. Routing plays a major role in FiWi networks. Accordingly to a novel path length metric which emphasizes on “heaviest edge”, this dissertation proposes a polynomial algorithm on single path computation. NP-completeness proof as well as approximation algorithm are presented for multi-path routing. Radio-frequency identification (RFID) technology is extensively used at present for identification and tracking of a multitude of objects. In many configurations, simultaneous activation of two readers may cause a “reader collision” when tags are present in the intersection of the sensing ranges of both readers. This dissertation ad- dresses slotted time access for Readers and tries to provide a collision-free scheduling scheme while minimizing total reading time. Finally, this dissertation studies a monitoring problem on the surface of the earth for significant environmental, social/political and extreme events using satellites as sensors. It is assumed that the impact of a significant event spills into neighboring regions and there will be corresponding indicators. Careful deployment of sensors, utilizing “Identifying Codes”, can ensure that even though the number of deployed sensors is fewer than the number of regions, it may be possible to uniquely identify the region where the event has taken place.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Cooperative Navigation for Low-bandwidth Mobile Acoustic Networks.

    Full text link
    This thesis reports on the design and validation of estimation and planning algorithms for underwater vehicle cooperative localization. While attitude and depth are easily instrumented with bounded-error, autonomous underwater vehicles (AUVs) have no internal sensor that directly observes XY position. The global positioning system (GPS) and other radio-based navigation techniques are not available because of the strong attenuation of electromagnetic signals in seawater. The navigation algorithms presented herein fuse local body-frame rate and attitude measurements with range observations between vehicles within a decentralized architecture. The acoustic communication channel is both unreliable and low bandwidth, precluding many state-of-the-art terrestrial cooperative navigation algorithms. We exploit the underlying structure of a post-process centralized estimator in order to derive two real-time decentralized estimation frameworks. First, the origin state method enables a client vehicle to exactly reproduce the corresponding centralized estimate within a server-to-client vehicle network. Second, a graph-based navigation framework produces an approximate reconstruction of the centralized estimate onboard each vehicle. Finally, we present a method to plan a locally optimal server path to localize a client vehicle along a desired nominal trajectory. The planning algorithm introduces a probabilistic channel model into prior Gaussian belief space planning frameworks. In summary, cooperative localization reduces XY position error growth within underwater vehicle networks. Moreover, these methods remove the reliance on static beacon networks, which do not scale to large vehicle networks and limit the range of operations. Each proposed localization algorithm was validated in full-scale AUV field trials. The planning framework was evaluated through numerical simulation.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113428/1/jmwalls_1.pd
    • 

    corecore