10,925 research outputs found

    Robust Fault Tolerant uncapacitated facility location

    Get PDF
    In the uncapacitated facility location problem, given a graph, a set of demands and opening costs, it is required to find a set of facilities R, so as to minimize the sum of the cost of opening the facilities in R and the cost of assigning all node demands to open facilities. This paper concerns the robust fault-tolerant version of the uncapacitated facility location problem (RFTFL). In this problem, one or more facilities might fail, and each demand should be supplied by the closest open facility that did not fail. It is required to find a set of facilities R, so as to minimize the sum of the cost of opening the facilities in R and the cost of assigning all node demands to open facilities that did not fail, after the failure of up to \alpha facilities. We present a polynomial time algorithm that yields a 6.5-approximation for this problem with at most one failure and a 1.5 + 7.5\alpha-approximation for the problem with at most \alpha > 1 failures. We also show that the RFTFL problem is NP-hard even on trees, and even in the case of a single failure

    Fault Tolerant Clustering Revisited

    Full text link
    In discrete k-center and k-median clustering, we are given a set of points P in a metric space M, and the task is to output a set C \subseteq ? P, |C| = k, such that the cost of clustering P using C is as small as possible. For k-center, the cost is the furthest a point has to travel to its nearest center, whereas for k-median, the cost is the sum of all point to nearest center distances. In the fault-tolerant versions of these problems, we are given an additional parameter 1 ?\leq \ell \leq ? k, such that when computing the cost of clustering, points are assigned to their \ell-th nearest-neighbor in C, instead of their nearest neighbor. We provide constant factor approximation algorithms for these problems that are both conceptually simple and highly practical from an implementation stand-point

    Designing application software in wide area network settings

    Get PDF
    Progress in methodologies for developing robust local area network software has not been matched by similar results for wide area settings. The design of application software spanning multiple local area environments is examined. For important classes of applications, simple design techniques are presented that yield fault tolerant wide area programs. An implementation of these techniques as a set of tools for use within the ISIS system is described
    • …
    corecore