7,852 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    An Adaptive Approach to Sensor Bias Fault Diagnosis and Accommodation for a Class of Input-Output Nonlinear Systems

    Get PDF
    This paper presents an adaptive sensor fault diagnosis and accommodation scheme for multiple sensor bias faults for a class of input-output nonlinear systems subject to modeling uncertainty and measurement noise. The proposed scheme consists of a nonlinear estimation model that includes an adaptive component which is initiated upon the detection of a fault, in order to approximate the magnitude of the bias faults. A detectability condition characterizing the class of detectable sensor bias faults is derived and the robustness and stability properties of the adaptive scheme are presented. The estimation of the magnitude of the sensor bias faults allows the identification of the faulty sensors and it is also used for fault accommodation purposes. The effectiveness of the proposed scheme is demonstrated through a simulation example

    Neural Back-Stepping Control of Hypersonic Flight Vehicle with Actuator Fault

    Get PDF
    This paper addresses the fault-tolerant control of hypersonic flight vehicle. To estimate the unknown function in flight dynamics, neural networks are employed in controller design. Moreover, in order to compensate the actuator fault, an adaptive signal is introduced in the controller design to estimate the unknown fault parameters. Simulation results demonstrate that the proposed approach could obtain satisfying performance

    Active Fault Tolerant Control of Livestock Stable Ventilation System

    Get PDF

    Fault detection and isolation of pitch actuator faults in a floating wind turbine

    Get PDF
    In this work, the problem of detection and isolation of pitch actuator faults in wind turbines (WTs) is addressed. First, interval observers are used by means of the Luenberger observer to obtain an upper and a lower estimated bounds. The main advantage of this approach is that the new bounds enclose the real output measurement within a bounded interval in a guaranteed way under consideration of the uncertainties (in this case noise in the pitch measurement). Finally, residual signals are obtained and processed to detect and isolate the different faults. The efficiency of the proposed approach is demonstrated through simulation with the 5MW floating offshore (barge) WT benchmark model given by the aero-lastic wind turbine simulator-FAST. This software is designed by the U.S. National Renewable Energy Laboratory and is widely used in research and industry.Peer ReviewedPostprint (published version

    Adaptive Approximation-Based Control for Nonlinear Systems: A Unified Solution with Accurate and Inaccurate Measurements

    Full text link
    A unified solution to adaptive approximation-based control for nonlinear systems with accurate and inaccurate state measurement is synthesized in this study. Starting from the standard adaptive approximation-based controller with accurate state measurement, its corresponding physical interpretation, stability conclusion, and learning ability are rigorously addressed when facing additive measurement inaccuracy, and explicit answers are obtained in the framework of both controller matching and system matching. Finally, it proves that, with a certain condition, the standard adaptive approximation-based controller works as a unified solution for the cases with accurate and inaccurate measurement, and the solution can be extended to the nonlinear system control problems with extra unknown dynamics or faults in actuator and/or process dynamics. A single-link robot arm example is used for the simulation demonstration of the unified solution

    Trends in vehicle motion control for automated driving on public roads

    Get PDF
    In this paper, we describe how vehicle systems and the vehicle motion control are affected by automated driving on public roads. We describe the redundancy needed for a road vehicle to meet certain safety goals. The concept of system safety as well as system solutions to fault tolerant actuation of steering and braking and the associated fault tolerant power supply is described. Notably restriction of the operational domain in case of reduced capability of the driving automation system is discussed. Further we consider path tracking, state estimation of vehicle motion control required for automated driving as well as an example of a minimum risk manoeuver and redundant steering by means of differential braking. The steering by differential braking could offer heterogeneous or dissimilar redundancy that complements the redundancy of described fault tolerant steering systems for driving automation equipped vehicles. Finally, the important topic of verification of driving automation systems is addressed

    An LPV Fault Tolerant control for semi-active suspension -scheduled by fault estimation

    No full text
    International audienceIn this paper, a novel fault tolerant control is proposed to accommodate damper faults (oil leakages) in a semi-active suspension system based on a quarter-car vehicle model. The fault accommodation is based on the Linear Parameter Varying (LPV) control strategy and involved in 2 steps. At first, a fast time-varying fault is estimated by using the fast adaptive fault estimation (FAFE) algorithm and based on an unknown input adaptive observer. Thanks to information about the estimated fault, the dissipativity domain of the semi-active suspension is adapted according to the fault. Then a single LPV fault tolerant controller is developed to manage the system performances. The controller solution, derived in the LPV/H ∞ framework, is based on the LMI solution for polytopic systems. Some simulation results are presented that show the effectiveness of this approach
    • …
    corecore