9 research outputs found

    Fault-tolerant Hamiltonian laceability of Cayley graphs generated by transposition trees

    Get PDF
    AbstractA bipartite graph is Hamiltonian laceable if there exists a Hamiltonian path joining every pair of vertices that are in different parts of the graph. It is well known that Cay(Sn,B) is Hamiltonian laceable, where Sn is the symmetric group on {1,2,…,n} and B is a generating set consisting of transpositions of Sn. In this paper, we show that for any F⊆E(Cay(Sn,B)), if |F|≤n−3 and n≥4, then there exists a Hamiltonian path in Cay(Sn,B)−F joining every pair of vertices that are in different parts of the graph. The result is optimal with respect to the number of edge faults

    Automorphisms generating disjoint Hamilton cycles in star graphs

    Get PDF
    In the first part of the thesis we define an automorphism φn for each star graph Stn of degree n − 1, which yields permutations of labels for the edges of Stn taken from the set of integers {1, . . . , bn/2c}. By decomposing these permutations into permutation cycles, we are able to identify edge-disjoint Hamilton cycles that are automorphic images of a known two-labelled Hamilton cycle H1 2(n) in Stn. Our main result is an improvement from the existing lower bound of bϕ(n)/10c to b2ϕ(n)/9c, where ϕ is Euler’s totient function, for the known number of edge-disjoint Hamilton cycles in Stn for all odd integers n. For prime n, the improvement is from bn/8c to bn/5c. We extend this result to the cases when n is the power of a prime other than 3 and 7. The second part of the thesis studies ‘symmetric’ collections of edge-disjoint Hamilton cycles in Stn, i.e. collections that comprise images of H1 2(n) under general label-mapping automorphisms. We show that, for all even n, there exists a symmetric collection of bϕ(n)/2c edge-disjoint Hamilton cycles, and Stn cannot have symmetric collections of greater than bϕ(n)/2c such cycles for any n. Thus, Stn is not symmetrically Hamilton decomposable if n is not prime. We also give cases of even n, in terms of Carmichael’s reduced totient function λ, for which ‘strongly’ symmetric collections of edge-disjoint Hamilton cycles, which are generated from H1 2(n) by a single automorphism, can and cannot attain the optimum bound bϕ(n)/2c for symmetric collections. In particular, we show that if n is a power of 2, then Stn has a spanning subgraph with more than half of the edges of Stn, which is strongly symmetrically Hamilton decomposable. For odd n, it remains an open problem as to whether the bϕ(n)/2c can be achieved for symmetric collections, but we are able to show that, for certain odd n, a ϕ(n)/4 bound is achievable and optimal for strongly symmetric collections. The search for edge-disjoint Hamilton cycles in star graphs is important for the design of interconnection network topologies in computer science. All our results improve on the known bounds for numbers of any kind of edge-disjoint Hamilton cycles in star graphs

    Investigation of the robustness of star graph networks

    Full text link
    The star interconnection network has been known as an attractive alternative to n-cube for interconnecting a large number of processors. It possesses many nice properties, such as vertex/edge symmetry, recursiveness, sublogarithmic degree and diameter, and maximal fault tolerance, which are all desirable when building an interconnection topology for a parallel and distributed system. Investigation of the robustness of the star network architecture is essential since the star network has the potential of use in critical applications. In this study, three different reliability measures are proposed to investigate the robustness of the star network. First, a constrained two-terminal reliability measure referred to as Distance Reliability (DR) between the source node u and the destination node I with the shortest distance, in an n-dimensional star network, Sn, is introduced to assess the robustness of the star network. A combinatorial analysis on DR especially for u having a single cycle is performed under different failure models (node, link, combined node/link failure). Lower bounds on the special case of the DR: antipode reliability, are derived, compared with n-cube, and shown to be more fault-tolerant than n-cube. The degradation of a container in a Sn having at least one operational optimal path between u and I is also examined to measure the system effectiveness in the presence of failures under different failure models. The values of MTTF to each transition state are calculated and compared with similar size containers in n-cube. Meanwhile, an upper bound under the probability fault model and an approximation under the fixed partitioning approach on the ( n-1)-star reliability are derived, and proved to be similarly accurate and close to the simulations results. Conservative comparisons between similar size star networks and n-cubes show that the star network is more robust than n-cube in terms of ( n-1)-network reliability

    Graphes super-eulériens, problèmes hamiltonicité et extrémaux dans les graphes

    Get PDF
    Dans cette thèse, nous concentrons sur les sujets suivants: super-eulérien graphe, hamiltonien ligne graphes, le tolerant aux pannes hamiltonien laceabilité de Cayley graphe généré par des transposition arbres et plusieurs problèmes extrémaux concernant la (minimum et/ou maximum) taille des graphes qui ont la même propriété.Cette thèse comprend six chapitres. Le premier chapitre introduit des définitions et indique la conclusion des resultants principaux de cette thèse, et dans le dernier chapitre, nous introduisons la recherche de furture de la thèse. Les travaux principaux sont montrés dans les chapitres 2-5 comme suit:Dans le chapitre 2, nous explorons les conditions pour qu'un graphe soit super-eulérien.Dans la section 1, nous caractérisons des graphes dont le dégrée minimum est au moins de 2 et le nombre de matching est au plus de 3. Dans la section 2, nous prouvons que si pour tous les arcs xy E(G), d(x)+d(y)>=n-1-p(n), alors G est collapsible sauf quelques bien définis graphes qui ont la propriété p(n)=0 quand n est impair et p(n)=1 quand n est pair.Dans la section 3 de la Chapitre 2, nous trouvons les conditions suffisantes pour que un graphe de 3-arcs connectés soit pliable.Dans le chapitre 3, nous considérons surtout l'hamiltonien de 3-connecté ligne graphe.Dans la première section de Chapitre 3, nous montrons que chaque 3-connecté, essentiellement11-connecté ligne graphe est hamiltonien-connecté. Cela renforce le résultat dans [91]. Dans la seconde section de Chapitre 3, nous montrons que chaque 3-connecté, essentiellement 10-connecté ligne graphe est hamiltonien-connecté.Dans la troisième section de Chapitre 3, nous montrons que 3-connecté, essentiellement 4-connecté ligne graphe venant d'un graphe qui comprend au plus 9 sommets de degré 3 est hamiltonien. Dans le chapitre 4, nous montrons d'abord que pour tous FE(Cay(B:Sn))F\subseteq E(Cay(B:S_{n})), si Fn3|F|\leq n-3 et n4n\geq 4, il existe un hamiltonien graphe dans Cay(B:Sn)FCay(B:S_{n})-F entre tous les paires de sommets qui sont dans les différents partite ensembles. De plus, nous renforçons le résultat figurant ci-dessus dans la seconde section montrant que Cay(Sn,B)FCay(S_n,B)-F est bipancyclique si Cay(Sn,B)Cay(S_n,B) n'est pas un star graphe, n4n\geq 4 et Fn3|F|\leq n-3.Dans le chapitre 5, nous considérons plusieurs problems extrémaux concernant la taille des graphes.Dans la section 1 de Chapitre 5, nous bornons la taille de sous-graphe provoqué par mm sommets de hypercubes (nn-cubes). Dans la section 2 de Chapitre 5, nous étudions partiellement la taille minimale d'un graphe savant son degré minimum et son degré d'arc. Dans la section 3 de Chapitre 5, nous considérons la taille minimale des graphes satisfaisants la Ore-condition.In this thesis, we focus on the following topics: supereulerian graphs, hamiltonian line graphs, fault-tolerant Hamiltonian laceability of Cayley graphs generated by transposition trees, and several extremal problems on the (minimum and/or maximum) size of graphs under a given graph property. The thesis includes six chapters. The first one is to introduce definitions and summary the main results of the thesis, and in the last chapter we introduce the furture research of the thesis. The main studies in Chapters 2 - 5 are as follows. In Chapter 2, we explore conditions for a graph to be supereulerian.In Section 1 of Chapter 2, we characterize the graphs with minimum degree at least 2 and matching number at most 3. By using the characterization, we strengthen the result in [93] and we also address a conjecture in the paper.In Section 2 of Chapter 2, we prove that if d(x)+d(y)n1p(n)d(x)+d(y)\geq n-1-p(n) for any edge xyE(G)xy\in E(G), then GG is collapsible except for several special graphs, where p(n)=0p(n)=0 for nn even and p(n)=1p(n)=1 for nn odd. As a corollary, a characterization for graphs satisfying d(x)+d(y)n1p(n)d(x)+d(y)\geq n-1-p(n) for any edge xyE(G)xy\in E(G) to be supereulerian is obtained. This result extends the result in [21].In Section 3 of Chapter 2, we focus on a conjecture posed by Chen and Lai [Conjecture~8.6 of [33]] that every 3-edge connected and essentially 6-edge connected graph is collapsible. We find a kind of sufficient conditions for a 3-edge connected graph to be collapsible.In Chapter 3, we mainly consider the hamiltonicity of 3-connected line graphs.In the first section of Chapter 3, we give several conditions for a line graph to be hamiltonian, especially we show that every 3-connected, essentially 11-connected line graph is hamilton- connected which strengthens the result in [91].In the second section of Chapter 3, we show that every 3-connected, essentially 10-connected line graph is hamiltonian-connected.In the third section of Chapter 3, we show that 3-connected, essentially 4-connected line graph of a graph with at most 9 vertices of degree 3 is hamiltonian. Moreover, if GG has 10 vertices of degree 3 and its line graph is not hamiltonian, then GG can be contractible to the Petersen graph.In Chapter 4, we consider edge fault-tolerant hamiltonicity of Cayley graphs generated by transposition trees. We first show that for any FE(Cay(B:Sn))F\subseteq E(Cay(B:S_{n})), if Fn3|F|\leq n-3 and n4n\geq4, then there exists a hamiltonian path in Cay(B:Sn)FCay(B:S_{n})-F between every pair of vertices which are in different partite sets. Furthermore, we strengthen the above result in the second section by showing that Cay(Sn,B)FCay(S_n,B)-F is bipancyclic if Cay(Sn,B)Cay(S_n,B) is not a star graph, n4n\geq4 and Fn3|F|\leq n-3.In Chapter 5, we consider several extremal problems on the size of graphs.In Section 1 of Chapter 5, we bounds the size of the subgraph induced by mm vertices of hypercubes. We show that a subgraph induced by mm (denote mm by i=0s2ti\sum\limits_{i=0}^ {s}2^{t_i}, t0=[log2m]t_0=[\log_2m] and ti=[log2(mr=0i12tr)]t_i= [\log_2({m-\sum\limits_{r=0}^{i-1}2 ^{t_r}})] for i1i\geq1) vertices of an nn-cube (hypercube) has at most i=0sti2ti1+i=0si2ti\sum\limits_{i=0}^{s}t_i2^{t_i-1} +\sum\limits_{i=0}^{s} i\cdot2^{t_i} edges. As its applications, we determine the mm-extra edge-connectivity of hypercubes for m2[n2]m\leq2^{[\frac{n}2]} and gg-extra edge-connectivity of the folded hypercube for gng\leq n.In Section 2 of Chapter 5, we partially study the minimum size of graphs with a given minimum degree and a given edge degree. As an application, we characterize some kinds of minimumrestricted edge connected graphs.In Section 3 of Chapter 5, we consider the minimum size of graphs satisfying Ore-condition.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Subject Index Volumes 1–200

    Get PDF

    Fault-tolerant Hamiltonian laceability of Cayley graphs generated by transposition trees

    No full text
    NSFC [10671165]A bipartite graph is Hamiltonian laceable if there exists a Hamiltonian path joining every pair of vertices that are in different parts of the graph. It is well known that Cay(S-n, B) is Hamiltonian laceable, where S-n is the symmetric group on {1, 2, ..., n} and B is a generating set consisting of transpositions of S-n. In this paper, we show that for any F subset of E(Cay(S-n, B)), if vertical bar F vertical bar = 4, then there exists a Hamiltonian path in Cay(S-n B) - F joining every pair of vertices that are in different parts of the graph. The result is optimal with respect to the number of edge faults. (c) 2012 Elsevier B.V. All rights reserved

    Graphes super-eulériens, problèmes hamiltonicité et extrémaux dans les graphes

    No full text
    In this thesis, we focus on the following topics: supereulerian graphs, hamiltonian line graphs, fault-tolerant Hamiltonian laceability of Cayley graphs generated by transposition trees, and several extremal problems on the (minimum and/or maximum) size of graphs under a given graph property. The thesis includes six chapters. The first one is to introduce definitions and summary the main results of the thesis, and in the last chapter we introduce the furture research of the thesis. The main studies in Chapters 2 - 5 are as follows. In Chapter 2, we explore conditions for a graph to be supereulerian.In Section 1 of Chapter 2, we characterize the graphs with minimum degree at least 2 and matching number at most 3. By using the characterization, we strengthen the result in [93] and we also address a conjecture in the paper.In Section 2 of Chapter 2, we prove that if d(x)+d(y)≥ n-1-p(n) for any edge xy∈E(G), then G is collapsible except for several special graphs, where p(n)=0 for n even and p(n)=1 for n odd. As a corollary, a characterization for graphs satisfying d(x)+d(y)≥ n-1-p(n) for any edge xy∈E(G) to be supereulerian is obtained. This result extends the result in [21]. In Section 3 of Chapter 2, we focus on a conjecture posed by Chen and Lai [Conjecture~8.6 of [33]] that every 3-edge connected and essentially 6-edge connected graph is collapsible. We find a kind of sufficient conditions for a 3-edge connected graph to be collapsible. In Chapter 3, we mainly consider the hamiltonicity of 3-connected line graphs. In the first section of Chapter 3, we give several conditions for a line graph to be hamiltonian, especially we show that every 3-connected, essentially 11-connected line graph is hamilton- connected which strengthens the result in [91]. In the second section of Chapter 3, we show that every 3-connected, essentially 10-connected line graph is hamiltonian-connected. In the third section of Chapter 3, we show that 3-connected, essentially 4-connected line graph of a graph with at most 9 vertices of degree 3 is hamiltonian. Moreover, if G has 10 vertices of degree 3 and its line graph is not hamiltonian, then G can be contractible to the Petersen graph.In Chapter 4, we consider edge fault-tolerant hamiltonicity of Cayley graphs generated by transposition trees. We first show that for any F ⊆ E(Cay(B:S_{n})), if |F| ≤ n-3 and n ≥ 4, then there exists a hamiltonian path in Cay(B:S_{n})-F between every pair of vertices which are in different partite sets. Furthermore, we strengthen the above result in the second section by showing that Cay(S_n,B)-F is bipancyclic if Cay(S_n,B) is not a star graph, n ≥ 4 and |F| ≤ n-3. In Chapter 5, we consider several extremal problems on the size of graphs. In Section 1 of Chapter 5, we bounds the size of the subgraph induced by m vertices of hypercubes. We show that a subgraph induced by m (denote m by ∑_{i=0}^{s}2^{t_i}, t₀=[log₂m] and t_i=[log₂(m-(∑_{r=0}^{i-1}2^{t_r}))] for i ≥ 1) vertices of an n-cube (hypercube) has at most ∑_{i=0}^{s}t_{i}2^{t_i-1} + ∑_{i=0}^{s} i...2^{t_i} edges. As its applications, we determine the m-extra edge-connectivity of hypercubes for m ≤ 2^{n/2} and g-extra edge-connectivity of the folded hypercube for g ≤ n.In Section 2 of Chapter 5, we partially study the minimum size of graphs with a given minimum degree and a given edge degree. As an application, we characterize some kinds of minimumrestricted edge connected graphs. In Section 3 of Chapter 5, we consider the minimum size of graphs satisfying Ore-condition.Dans cette thèse, nous concentrons sur les sujets suivants: super-eulérien graphe, hamiltonien ligne graphes, le tolerant aux pannes hamiltonien laceabilité de Cayley graphe généré par des transposition arbres et plusieurs problèmes extrémaux concernant la (minimum et/ou maximum) taille des graphes qui ont la même propriété.Cette thèse comprend six chapitres. Le premier chapitre introduit des définitions et indique la conclusion des resultants principaux de cette thèse, et dans le dernier chapitre, nous introduisons la recherche de furture de la thèse. Les travaux principaux sont montrés dans les chapitres 2-5 comme suit:Dans le chapitre 2, nous explorons les conditions pour qu'un graphe soit super-eulérien.Dans la section 1, nous caractérisons des graphes dont le dégrée minimum est au moins de 2 et le nombre de matching est au plus de 3. Dans la section 2, nous prouvons que si pour tous les arcs xy∈E(G), d(x)+d(y)≥ n-1-p(n), alors G est collapsible sauf quelques bien définis graphes qui ont la propriété p(n)=0 quand n est impair et p(n)=1 quand n est pair. Dans la section 3 de la Chapitre 2, nous trouvons les conditions suffisantes pour que un graphe de 3-arcs connectés soit pliable. Dans le chapitre 3, nous considérons surtout l'hamiltonien de 3-connecté ligne graphe. Dans la première section de Chapitre 3, nous montrons que chaque 3-connecté, essentiellement 11-connecté ligne graphe est hamiltonien-connecté. Cela renforce le résultat dans [91]. Dans la seconde section de Chapitre 3, nous montrons que chaque 3-connecté, essentiellement 10-connecté ligne graphe est hamiltonien-connecté. Dans la troisième section de Chapitre 3, nous montrons que 3-connecté, essentiellement 4-connecté ligne graphe venant d'un graphe qui comprend au plus 9 sommets de degré 3 est hamiltonien. Dans le chapitre 4, nous montrons d'abord que pour tous F ⊆ E(Cay(B:S_{n})), si |F| ≤ n-3 et n ≥ 4, il existe un hamiltonien graphe dans Cay(B:S_{n})-F entre tous les paires de sommets qui sont dans les différents partite ensembles. De plus, nous renforçons le résultat figurant ci-dessus dans la seconde section montrant que Cay(S_n,B)-F est bipancyclique si Cay(S_n,B) n'est pas un star graphe, n ≥ 4 et |F| ≤ n-3. Dans le chapitre 5, nous considérons plusieurs problems extrémaux concernant la taille des graphes. Dans la section 1 de Chapitre 5, nous bornons la taille de sous-graphe provoqué par m sommets de hypercubes (n-cubes). Dans la section 2 de Chapitre 5, nous étudions partiellement la taille minimale d'un graphe savant son degré minimum et son degré d'arc. Dans la section 3 de Chapitre 5, nous considérons la taille minimale des graphes satisfaisants la Ore-condition
    corecore