18,654 research outputs found

    Fault-tolerance and load management in a distributed stream processing system

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 187-199).Advances in monitoring technology (e.g., sensors) and an increased demand for online information processing have given rise to a new class of applications that require continuous, low-latency processing of large-volume data streams. These "stream processing applications" arise in many areas such as sensor-based environment monitoring, financial services, network monitoring, and military applications. Because traditional database management systems are ill-suited for high-volume, low-latency stream processing, new systems, called stream processing engines (SPEs), have been developed. Furthermore, because stream processing applications are inherently distributed, and because distribution can improve performance and scalability, researchers have also proposed and developed distributed SPEs. In this dissertation, we address two challenges faced by a distributed SPE: (1) faulttolerant operation in the face of node failures, network failures, and network partitions, and (2) federated load management. For fault-tolerance, we present a replication-based scheme, called Delay, Process, and Correct (DPC), that masks most node and network failures.(cont.) When network partitions occur, DPC addresses the traditional availability-consistency trade-off by maintaining, when possible, a desired availability specified by the application or user, but eventually also delivering the correct results. While maintaining the desired availability bounds, DPC also strives to minimize the number of inaccurate results that must later be corrected. In contrast to previous proposals for fault tolerance in SPEs, DPC simultaneously supports a variety of applications that differ in their preferred trade-off between availability and consistency. For load management, we present a Bounded-Price Mechanism (BPM) that enables autonomous participants to collaboratively handle their load without individually owning the resources necessary for peak operation. BPM is based on contracts that participants negotiate offline. At runtime, participants move load only to partners with whom they have a contract and pay each other the contracted price. We show that BPM provides incentives that foster participation and leads to good system-wide load distribution. In contrast to earlier proposals based on computational economies, BPM is lightweight, enables participants to develop and exploit preferential relationships, and provides stability and predictability.(cont.) Although motivated by stream processing, BPM is general and can be applied to any federated system. We have implemented both schemes in the Borealis distributed stream processing engine. They will be available with the next release of the system.by Magdalena Balazinska.Ph.D

    Integrating Scale Out and Fault Tolerance in Stream Processing using Operator State Management

    Get PDF
    As users of big data applications expect fresh results, we witness a new breed of stream processing systems (SPS) that are designed to scale to large numbers of cloud-hosted machines. Such systems face new challenges: (i) to benefit from the pay-as-you-go model of cloud computing, they must scale out on demand, acquiring additional virtual machines (VMs) and parallelising operators when the workload increases; (ii) failures are common with deployments on hundreds of VMs - systems must be fault-tolerant with fast recovery times, yet low per-machine overheads. An open question is how to achieve these two goals when stream queries include stateful operators, which must be scaled out and recovered without affecting query results. Our key idea is to expose internal operator state explicitly to the SPS through a set of state management primitives. Based on them, we describe an integrated approach for dynamic scale out and recovery of stateful operators. Externalised operator state is checkpointed periodically by the SPS and backed up to upstream VMs. The SPS identifies individual operator bottlenecks and automatically scales them out by allocating new VMs and partitioning the check-pointed state. At any point, failed operators are recovered by restoring checkpointed state on a new VM and replaying unprocessed tuples. We evaluate this approach with the Linear Road Benchmark on the Amazon EC2 cloud platform and show that it can scale automatically to a load factor of L=350 with 50 VMs, while recovering quickly from failures. Copyright © 2013 ACM
    • …
    corecore