2,957 research outputs found

    Identifying codes in vertex-transitive graphs and strongly regular graphs

    Get PDF
    We consider the problem of computing identifying codes of graphs and its fractional relaxation. The ratio between the size of optimal integer and fractional solutions is between 1 and 2ln(vertical bar V vertical bar) + 1 where V is the set of vertices of the graph. We focus on vertex-transitive graphs for which we can compute the exact fractional solution. There are known examples of vertex-transitive graphs that reach both bounds. We exhibit infinite families of vertex-transitive graphs with integer and fractional identifying codes of order vertical bar V vertical bar(alpha) with alpha is an element of{1/4, 1/3, 2/5}These families are generalized quadrangles (strongly regular graphs based on finite geometries). They also provide examples for metric dimension of graphs

    ON VULNERABILITY MEASURES OF NETWORKS

    Get PDF
    As links and nodes of interconnection networks are exposed to failures, one of the most important features of a practical networks design is fault tolerance. Vulnerability measures of communication networks are discussed including the connectivities, fault diameters, and measures based on Hosoya-Wiener polynomial. An upper bound for the edge fault diameter of product graphs is proved

    The edge fault-diameter of Cartesian graph bundles

    Get PDF
    AbstractA Cartesian graph bundle is a generalization of a graph covering and a Cartesian graph product. Let G be a kG-edge connected graph and D̄c(G) be the largest diameter of subgraphs of G obtained by deleting c<kG edges. We prove that D̄a+b+1(G)≤D̄a(F)+D̄b(B)+1 if G is a graph bundle with fibre F over base B, a<kF, and b<kB. As an auxiliary result we prove that the edge-connectivity of graph bundle G is at least kF+kB

    ON VULNERABILITY MEASURES OF NETWORKS

    Get PDF
    As links and nodes of interconnection networks are exposed to failures, one of the most important features of a practical networks design is fault tolerance. Vulnerability measures of communication networks are discussed including the connectivities, fault diameters, and measures based on Hosoya-Wiener polynomial. An upper bound for the edge fault diameter of product graphs is proved
    corecore