94 research outputs found

    Assessment and Improvement of the Pattern Recognition Performance of Memdiode-Based Cross-Point Arrays with Randomly Distributed Stuck-at-Faults

    Get PDF
    In this work, the effect of randomly distributed stuck-at faults (SAFs) in memristive crosspoint array (CPA)-based single and multi-layer perceptrons (SLPs and MLPs, respectively) intended for pattern recognition tasks is investigated by means of realistic SPICE simulations. The quasi-static memdiode model (QMM) is considered here for the modelling of the synaptic weights implemented with memristors. Following the standard memristive approach, the QMM comprises two coupled equations, one for the electron transport based on the double-diode equation with a single series resistance and a second equation for the internal memory state of the device based on the so-called logistic hysteron. By modifying the state parameter in the current-voltage characteristic, SAFs of different severeness are simulated and the final outcome is analysed. Supervised ex-situ training and two well-known image datasets involving hand-written digits and human faces are employed to assess the inference accuracy of the SLP as a function of the faulty device ratio. The roles played by the memristor’s electrical parameters, line resistance, mapping strategy, image pixelation, and fault type (stuck-at-ON or stuck-at-OFF) on the CPA performance are statistically analysed following a Monte-Carlo approach. Three different re-mapping schemes to help mitigate the effect of the SAFs in the SLP inference phase are thoroughly investigated.In this work, the effect of randomly distributed stuck-at faults (SAFs) in memristive cross-point array (CPA)-based single and multi-layer perceptrons (SLPs and MLPs, respectively) intended for pattern recognition tasks is investigated by means of realistic SPICE simulations. The quasi-static memdiode model (QMM) is considered here for the modelling of the synaptic weights implemented with memristors. Following the standard memristive approach, the QMM comprises two coupled equations, one for the electron transport based on the double-diode equation with a single series resistance and a second equation for the internal memory state of the device based on the so-called logistic hysteron. By modifying the state parameter in the current-voltage characteristic, SAFs of different severeness are simulated and the final outcome is analysed. Supervised ex-situ training and two well-known image datasets involving hand-written digits and human faces are employed to assess the inference accuracy of the SLP as a function of the faulty device ratio. The roles played by the memristor?s electrical parameters, line resistance, mapping strategy, image pixelation, and fault type (stuck-at-ON or stuck-at-OFF) on the CPA performance are statistically analysed following a Monte-Carlo approach. Three different re-mapping schemes to help mitigate the effect of the SAFs in the SLP inference phase are thoroughly investigated.Fil: Aguirre, Fernando Leonel. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Universitat Autònoma de Barcelona; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pazos, Sebastián Matías. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Palumbo, Félix Roberto Mario. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Morell, Antoni. Universitat Autònoma de Barcelona; EspañaFil: Suñé, Jordi. Universitat Autònoma de Barcelona; EspañaFil: Miranda, Enrique. Universitat Autònoma de Barcelona; Españ

    DeepDyve: Dynamic Verification for Deep Neural Networks

    Full text link
    Deep neural networks (DNNs) have become one of the enabling technologies in many safety-critical applications, e.g., autonomous driving and medical image analysis. DNN systems, however, suffer from various kinds of threats, such as adversarial example attacks and fault injection attacks. While there are many defense methods proposed against maliciously crafted inputs, solutions against faults presented in the DNN system itself (e.g., parameters and calculations) are far less explored. In this paper, we develop a novel lightweight fault-tolerant solution for DNN-based systems, namely DeepDyve, which employs pre-trained neural networks that are far simpler and smaller than the original DNN for dynamic verification. The key to enabling such lightweight checking is that the smaller neural network only needs to produce approximate results for the initial task without sacrificing fault coverage much. We develop efficient and effective architecture and task exploration techniques to achieve optimized risk/overhead trade-off in DeepDyve. Experimental results show that DeepDyve can reduce 90% of the risks at around 10% overhead

    Simulation and implementation of novel deep learning hardware architectures for resource constrained devices

    Get PDF
    Corey Lammie designed mixed signal memristive-complementary metal–oxide–semiconductor (CMOS) and field programmable gate arrays (FPGA) hardware architectures, which were used to reduce the power and resource requirements of Deep Learning (DL) systems; both during inference and training. Disruptive design methodologies, such as those explored in this thesis, can be used to facilitate the design of next-generation DL systems
    • …
    corecore